
Design and Implementation of Functionality,
Security and Maintainability Enhancements for

SCIONLab Coordination Service

Bachelor Thesis

Claude Hähni

October 7, 2017

Advisors: Prof. Dr. Adrian Perrig, Prof. Dr. David Hausheer, Dr. Ercan Ucan

Department of Computer Science, ETH Zürich





Abstract

In order to increase SCION’s [1] availability and distribute it further,
the SCIONLab project was created. SCIONLab is a publicly available
version of SCION that allows research institutions and other interested
parties to easily join the SCION testbed environment, thus making
it possible to experiment with its unique capabilities. One goal of
SCIONLab is to reduce the administration overhead for an institution
to join and manage their own ASes. This management is done through
the SCIONLab Coordination Service which serves two purposes. First,
it offers an easy-to-use interface, enabling interested parties to register
and download AS configurations to deploy onto their own hardware in
order to become part of the SCION network. Moreover, SCIONLab Co-
ordination Service is designed to be a global intermediary between the
local management services of different ASes, managing connections
between one another. The new features and components developed in
this thesis aim to render the pre-existent Coordination Service much
more robust and secure and extend its functionality to a point where it
can be made available to the public. New features include the ability to
send emails from SCIONLab Coordination Service, a mechanism to ver-
ify and activate new users, a counter measurement against bot abuse
as well as new mechanisms to improve testing and deployment.

i



Acknowledgments

First and foremost, I would like to thank Prof. Adrian Perrig and the
whole Network Security Group at ETH Zurich for the opportunity of
working on this project.

I would like to express my sincere gratitude to my supervisors Prof.
David Hausheer and Dr. Ercan Ucan for the many discussions and
their support throughout this thesis. Without their input, this thesis
would not have been possible.

Finally, I would like to express my profound gratitude to my fam-
ily for the continuous encouragement and the unconditioned support
throughout my studies. Thank you.

ii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Contents iii

1 Introduction 1

2 Background 3
2.1 SCION - A Future Internet Architecture . . . . . . . . . . . . . 3

2.1.1 Network Structure . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Path Selection . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 SCION Architecture . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Border Routers . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Beacon Servers . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Path Servers . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Certificate Servers . . . . . . . . . . . . . . . . . . . . . 6
2.2.5 Name Servers . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 SCION AS Management Framework . . . . . . . . . . . . . . . 6
2.3.1 Local Management Service . . . . . . . . . . . . . . . . 7
2.3.2 SCIONLab Coordination Service . . . . . . . . . . . . . 8

2.4 SCIONLab Experimentation Environment . . . . . . . . . . . . 8

3 Related Work 11
3.1 PlanetLab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 PlanetLab Node Management . . . . . . . . . . . . . . 11
3.2 GENI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Fed4FIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Requirements Engineering 15

iii



Contents

4.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Non-Functional Requirements . . . . . . . . . . . . . . . . . . 16

5 Architecture Overview 17
5.1 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.2 Back End Server . . . . . . . . . . . . . . . . . . . . . . 18
5.2.3 Web Interface . . . . . . . . . . . . . . . . . . . . . . . . 18

5.3 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.1 Postmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.2 Google reCAPTCHA . . . . . . . . . . . . . . . . . . . . 19

5.4 Continuous Integration . . . . . . . . . . . . . . . . . . . . . . . 19
5.5 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Implementation 21
6.1 Initial State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Email Address Verification . . . . . . . . . . . . . . . . . . . . . 21

6.2.1 Email package . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.2 Adapted Components . . . . . . . . . . . . . . . . . . . 25

6.3 Manual User Activation . . . . . . . . . . . . . . . . . . . . . . 26
6.3.1 Role based access control . . . . . . . . . . . . . . . . . 26
6.3.2 Adapted Components . . . . . . . . . . . . . . . . . . . 26

6.4 CAPTCHA Integration . . . . . . . . . . . . . . . . . . . . . . . 29
6.4.1 Google reCAPTCHA . . . . . . . . . . . . . . . . . . . . 29
6.4.2 Adapted Components . . . . . . . . . . . . . . . . . . . 31

6.5 CircleCI Integration . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.5.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . 32
6.5.2 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . 33
6.5.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.6 Deployment with Ansible . . . . . . . . . . . . . . . . . . . . . 34
6.6.1 Hosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.6.2 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.6.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.6.4 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Evaluation 37
7.1 Deployed Components . . . . . . . . . . . . . . . . . . . . . . . 37

7.1.1 Robust User Registration . . . . . . . . . . . . . . . . . 37
7.1.2 Invitation Based Registration . . . . . . . . . . . . . . . 40
7.1.3 Email Functionality . . . . . . . . . . . . . . . . . . . . 41
7.1.4 Integrated Testing . . . . . . . . . . . . . . . . . . . . . 42
7.1.5 Effortless Deployment . . . . . . . . . . . . . . . . . . . 42

7.2 Requirements Evaluation . . . . . . . . . . . . . . . . . . . . . 43

iv



Contents

8 Conclusion 47
8.1 Summary of Achievements . . . . . . . . . . . . . . . . . . . . 47
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A Security and Maintainability Enhancements 49
A.1 Ensuring Secure Operation . . . . . . . . . . . . . . . . . . . . 49

A.1.1 Server Crash on Login . . . . . . . . . . . . . . . . . . . 49
A.1.2 Nil Pointer When Accessing User Information . . . . . 49

A.2 Maintainability . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.2.1 Duplicate Configurations . . . . . . . . . . . . . . . . . 50
A.2.2 Obsolete HTTP Handling Code . . . . . . . . . . . . . 50
A.2.3 Obsolete Database Queries . . . . . . . . . . . . . . . . 50
A.2.4 Outdated Dependencies . . . . . . . . . . . . . . . . . . 50

Bibliography 53

v





Chapter 1

Introduction

SCION [1] is a proposed Future Internet Architecture (FIA) with the goal to
improve on today’s Internet which suffers from various shortcomings. Many
of these shortcomings are related to the IP and BGP protocols which together
form the narrow waist in the protocol stack. In particular, the Internet lacks
transparency and control over packet routing and the global nature of its
protocols makes it scale badly and suffer from outages. Instead of keeping
on building on this unstable foundation, SCION tackles these problems with
a fundamental re-design of the Internet’s core protocols. It aims to provide
high availability, control, transparency and secure end-to-end communica-
tion in networks. [2]

As such, SCION offers convincing opportunities especially for the industry
which can profit greatly from its unique features. The adoption of SCION
is not an obstacle as it interfaces nicely with today’s architecture. Still, it is
necessary that businesses, research institutions and other interested parties
are able to test its unique features. For this exact purpose the SCIONLab
Experimentation Environment was created. It’s a project aiming to provide
a testbed environment where users join the SCION network with their own
computation and actively contribute to the network, thus allowing for re-
alistic testing scenarios. To facilitate the process of joining SCIONLab and
managing nodes, SCIONLab provides an easy-to-use tool. The SCIONLab
Coordination Service offers an intuitive interface enabling interested parties
to register and download AS configurations to deploy onto their own hard-
ware in order to become part of the SCION network. Moreover, SCIONLab
Coordination Service is designed to be a global intermediary between the lo-
cal management services of different ASes, managing connections between
one another. Additional information about SCIONLab and SCIONLab Coor-
dination Service is available in Sections 2.4 and 2.3.2 respectively.

This thesis aims to improve on the existing Coordination Service, making
it easier and more appealing for end users as well as significantly improv-

1



1. Introduction

ing its functionality, security and maintainability. These improvements in
particular consist of the following enhancements and extensions: (1) An
email verification system used to validate user registrations, (2) an admin-
istrator panel that allows to review registrations and activate users, (3) the
implementation of a CAPTCHA, in order to protect the service against bot
accounts, (4) interfacing with a continuous integration solution for faster test-
ing of SCIONLab Coordination Service, (5) leveraging an automation engine
for easier deployment onto multiple hosts and (6) enhancing the service with
numerous improvements addressing speed, cleanliness and security of the
system.

The rest of the thesis is structured as follows: Chapter 2 contains an overview
of the SCION architecture, briefly describing its components. In Chapter
3, testbed management systems of other network experimentation environ-
ments are discussed. Chapter 4 presents design objectives constrained by
functional and non-functional requirements. Then, based on the require-
ments elicited in the previous chapter, we outline the proposed SCIONLab
Coordination Service architecture with its associated components and services
in chapter 5. Chapter 6 describes the process of implementing enhancements
dictated by the gathered requirements. It’s shown how SCIONLab Coordina-
tion Service was transformed to match the proposed architecture. To sum
up, Chapter 7 evaluates the enhancements made in chapter 6 and discusses
achievements of design objectives from Chapter 4. Finally, in chapter 8 we
come to a conclusion and provide an outlook on future work.

2



Chapter 2

Background

This chapter gives an overview of SCION, briefly describing the core con-
cepts, the network structure and essential components, all required to un-
derstand the context of this thesis. For an in-depth understanding please
refer to [1].

2.1 SCION - A Future Internet Architecture

SCION1 is a future Internet architecture with the goal to offer a ”highly
available”, secure and transparent ”point-to-point packet delivery” infras-
tructure. [1, Page 17] SCION tackles problems with respect to political and
economical issues, today’s internet suffers from. These properties can even
be fulfilled in presence of malicious network members.

To realize above ambitions SCION makes use of sophisticated techniques.
The most important of these concepts are described below:

2.1.1 Network Structure

SCION organizes Autonomous Systems (ASes) into entities called Isolation
Domains (ISDs). A selection of ASes in an ISD are designated core ASes
responsible for administering the ISD. For example, the core ASes negotiate
the roots of trust used for authentication. An AS can join an ISD by connect-
ing to an AS that already is a member of the ISD. Joining an ISD implies
agreeing to the policies governing the ISD. [1, Chapter 2]

2.1.2 Isolation

SCION divides the network into isolated entities called Isolation Domains
and lets these ISDs manage their own part of the network, including the elec-

1https://github.com/netsec-ethz/scion

3

https://github.com/netsec-ethz/scion
https://github.com/netsec-ethz/scion


2. Background

Figure 2.1: Schematic overview of a SCION network consisting of four ISDs
[1]

tion of authorities and properties like routing policies and key agreement.
This enables SCION to divide the control plane in a way such that one ISD
is not influenced by changes in any other ISD. As an example, this mitigates
outages (therefore increasing availability as desired) caused by accidentally
or even maliciously misconfigured ASes, which make BGP announcements
for addresses they have no control over. whereas In today’s Internet, poten-
tially every host could be affected. [1, Chapter 3] Figure 2.1 shows a network
with four ISDs, each consisting of multiple ASes.

2.1.3 Path Selection

SCION allows each host to control routes for outgoing and incoming pack-
ages. For each AS different paths, so called up-paths, are constructed using
Path Construction Beacons (PCBs). These PCBs reflect the constraints imposed
by the ISD routing policy. ASes then announce over which of these paths
they want to be reached. This technique, amongst other advantages, makes
it possible to deploy effective mechanisms against Denial of Service attacks.
Additionally, SCION offers a secure way of revoking failed paths and paths
that do not conform to the route policy any more. [1, Chapters 7, 10]

4



2.2. SCION Architecture

Figure 2.2: ISD with path segments for ASes A, B,C, D, and E [1]

2.1.4 Scalability

The controlled path selection approach outlined above ensures great scalabil-
ity, as opposed to source-based routing where every host needs to know the
entire network topology. At the same time, the freedom of path selection is
preserved. Furthermore, since routes are pre-determined, all the forwarding
information is encoded in the package itself. This renders badly scaling rout-
ing and forwarding tables obsolete, all to the benefit of increased scalability.
[1]

2.2 SCION Architecture

Following, important components of the SCION architecture are described.
All the information is taken from [1].

2.2.1 Border Routers

Border routers are responsible for inter-AS communication. They carry
out packet forwarding based on the pre-determined path, encoded in each
packet. Border routers work efficiently since the costly look up in a forward-
ing table is omitted.

5



2. Background

2.2.2 Beacon Servers

The main function of the Beacon Server is to process path construction bea-
cons (PCBs). The mechanism starts with a core AS generating initial PCBs
and distributing them over the network. Beacon servers of non-core ASes
upon receive propagate the PCBs down to their child ASes, such that the
whole network is flooded. Through these beacons, ASes learn paths on
which they can reach the ISD core. The AS then selects a subset of these
paths and registers them using its Path server.

2.2.3 Path Servers

After processing PCBs, an AS registers at its local path server down-paths
over which it wants to be reachable. This information is then used by other
ASes to determine routes to that AS.

In reverse, the path server also functions as look up service via which an AS
can retrieve path segments to reach another AS. When queried for an AS,
the path server returns the paths available to reach the desired AS.

2.2.4 Certificate Servers

Local certificate servers manage and cache certificates of all members inside
their AS, as well as the certificate issued by the ISD core to be used by the
AS itself. For example, certificate servers support path servers by validating
PCBs. [1, Chapter 2]

A certificate server in the ISD core manages all certificates it handed out to
ASes in its ISD and provides a validation service ASes can query.

2.2.5 Name Servers

Similar to the DNS system currently used in the Internet, name serves per-
form the translation from human-friendly names to addresses understood
by SCION infrastructure. The path server is then queried to obtain end-to-
end paths reaching the resolved address. [1, Chapter 2]

2.3 SCION AS Management Framework

For easy deployment and maintenance, SCION offers the SCION AS Man-
agement Framework which provides an intuitive web interface for deploy-
ing and managing ASes. The framework consists of a Local Management
Service per AS and a global coordinator, the SCIONLab Coordination Service.
This framework facilitates inter-AS communication by relaying connection
requests between ASes. In Section 2.1.1 we explained how an AS can join

6



2.3. SCION AS Management Framework

Figure 2.3: Overview of deployment architecture showing the role of
SCIONLab Coordination Service as mediator [1]

an ISD by connecting to an AS that already is in said ISD. Such ISD join re-
quests, for example, are handled by the framework. Figure 2.3 shows three
deployed ASes connected through the SCION AS Management Framework.

The following sections describe the two components of the framework in
more detail.

2.3.1 Local Management Service

The Local Management Service2 is the local component of the SCION AS Man-
agement Framework. It’s run by the authority managing the AS, used to
monitor and configure that AS. It offers a web interface through which,
amongst other functionality, administrators can make connection requests
to other ASes they wish to connect to. These requests, containing all the
necessary data to set up a new link between the initiator and the remote AS,
are then relayed via SCIONLab Coordination Service to the recipient AS. [1,
Chapter 10] In a similar fashion join requests for integrating an AS into an
ISD can be issued using the Local Management Service. Other functionality
involves generating the AS topology and the configurations to be deployed
onto local servers.

Figure 2.4 shows the Local Management Service interface presented when mak-
ing a connection request.

2https://github.com/netsec-ethz/scion-web

7

https://github.com/netsec-ethz/scion-web
https://github.com/netsec-ethz/scion-web


2. Background

Figure 2.4: Local Management Service used to make a connection request [3]

2.3.2 SCIONLab Coordination Service

SCIONLab Coordination Service3 serves two purposes. For one it is part of the
SCION AS Management Framework where it serves as a mediator between
different Local Management Service instances. It provides information about
available ISDs and ASes making it easy for new ASes to be created and con-
nected to the SCION network. SCIONLab Coordination Service in the role of a
mediator is not required by SCION. It’s merely a tool to facilitate the deploy-
ment process in the early stages of adoption. Later, inter-AS connections will
be negotiated between the involved parties directly. [1, Chapter 10]

SCIONLab Coordination Service’s second responsibility is the support of the
SCIONLab Experimentation Environment which lets interested organisations
and institutions experiment with the unique capabilities of SCION. More
detail about SCIONLab Experimentation Environment and the role SCIONLab
Coordination Service takes in it is available in Section 2.4.

2.4 SCIONLab Experimentation Environment

The SCIONLab Experimentation Environment is a project started with the goal
to provide a unique testbed environment, enabling researches to experiment

3https://github.com/netsec-ethz/scion-coord

8

https://github.com/netsec-ethz/scion-coord
https://github.com/netsec-ethz/scion-coord


2.4. SCIONLab Experimentation Environment

with SCION and the features it offers. At the same time, it allows the SCION
network to naturally grow by opening up the infrastructure. In SCIONLab,
participants join by deploying their own ASes in the SCION network and
then connecting to other SCIONLab ASes. Hence, SCIONLab forms a subset
of the entirety of ASes deployed in the SCION network. Participants become
an integral part of the network, actively partaking in routing. This allows
researchers to conduct highly realistic experiments, not possible with other
popular testbed environments. [1, Chapter 10]

SCIONLab builds on the foundation of SCION AS Management Frame-
work. It uses the same tools to offer a clean, easy-to-use way of joining
the SCIONLab network. As an example, SCIONLab Coordination Service fa-
cilitates the deployment of SCIONLab ASes for interested parties. It is en-
visioned to offer built in user administration capabilities, where users can
register accounts and download SCIONLab configurations to be run on their
hardware. Moreover, it also provides status updates about services running
in the AS and notifications about new SCION versions. [1, Chapter 10]

Summarized, the goals of SCIONLab Experimentation Environment are:

• Providing a unique testbed environment

• Opening up SCION to allow organic growth

• Allowing for realistic conduction of experiments

• Achieving above points with low overhead using user-friendly tools
such as the SCIONLab Coordination Service

Figure 2.5 shows an example of an envisioned SCIONLab environment.

9



2. Background

Figure 2.5: An envisioned SCIONLab testbed environment [1]

10



Chapter 3

Related Work

The following sections provide a brief overview of other testbed environ-
ments for running network and distributed systems experiments. In partic-
ular, their approach of organising and managing network nodes and their
way of handling users enrolled in experiments is highlighted.

3.1 PlanetLab

PlanetLab1 is an open platform for computer networking and distributed
systems research. It allows the deployment and testing of newly devel-
oped network protocols, distributed algorithms, peer-to-peer software and
CDNs2. [4] For conducting tests, each project has access to a set of globally
distributed virtual machines. These sets, called slices in PlanetLab terminol-
ogy, run on physical nodes provided and maintained by users of PlanetLab,
mainly research institutions.

3.1.1 PlanetLab Node Management

For an institution to be granted access to PlanetLab, it has to add its own
computational resources to the PlanetLab network. [5] These nodes are re-
motely managed by PlanetLab operational staff. Local administrators are
not given root access and are merely allowed to modify certain parameters,
such as outgoing network bandwidth. [6] A Principal Investigator (PI) at
each site is responsible for approving accounts and assigning them to slices.
Furthermore, the PI locally enforces the PlanetLab Acceptable Use Policy
(AUP). After instantiating a slice, users are given SSH3 access with root priv-

1https://www.planet-lab.org/
2Content Delivery Networks
3Secure Shell

11

https://www.planet-lab.org/
https://www.planet-lab.org/


3. Related Work

ileges to nodes in their slice. However, this root access is restricted as it does
not allow changes to hardware and network configurations. [7]

Comparing to SCIONLab Experimentation Environment, there are some funda-
mental differences:

• In SCIONLab Experimentation Environment, each project joins with its
own resources. Neither are there restrictions regarding system config-
uration, nor are nodes managed by SCIONLab operational staff.

• There is no assignment to slices by a PI in SCIONLab. The deployment
of nodes in SCIONLab is left entirely to the project team.

• Deployed nodes do not necessarily need to be virtualized. There are
configurations for running SCION directly on physical machines.

• Since there are no PIs in SCIONLab, the intermediate step of creating
accounts via PI is omitted. Institutions directly register their accounts
via SCIONLab Coordination Service.

• SCIONLab uses a novel approach of pre-authenticated accounts with
pre-established connections to get research institutions aboard. This al-
lows invited parties to start using SCIONLab with minimal overhead.

• Developed from ground up with simplicity in mind, the SCIONLab Ex-
perimentation Environment offers easy-to-use node management tools.

3.2 GENI

Similar to PlanetLab, GENI4 (Global Environment for Network Innovations)
is a testbed environment designed for networking and distributed systems
research. Like PlanetLab, GENI uses the notion of slices to describe a set
of geographically distributed virtual and physical hosts, instantiated for an
experiment. The unique feature of GENI is its ”deep programmability” ca-
pability which lets users connect compute resources on the link layer and
replace above layers with custom protocols. [8]

In GENI, each project is led by a single individual; the project lead. The
project lead is responsible for allocating slices and assigning project mem-
bers to them. Slices consist of different resource providers available in the
GENI network, so called aggregates.

Aggregates are hosted by institutions and managed by local operators. In
order to start using GENI, an account must be registered. However, thanks
to tight collaboration with many institutions, the institutions account may
be used to register for GENI. Additionally, since experiments on GENI often

4http://www.geni.net/

12

http://www.geni.net/
http://www.geni.net/


3.3. Fed4FIRE

revolve around new services, GENI allows end users, who are not affiliated
with the project, to opt in, in order to bring real traffic to experiments. [8]

3.3 Fed4FIRE

FED4FIRE5 strives for creating a large federation of experimentation facili-
ties and network testbeds in Europe. The main idea behind this initiative is
to simplify the use of already existing testbed environments, thus making
it possible for researchers to collaborate by sharing existing test facilities in
the broad field of ICT6. This also allows researchers to use multiple testbeds
for their experiments. [9]

FED4FIRE offers its facilities in two ways: Open Calls are selected projects
which receive financial support to be carried out. The other possibility, Open
Access, allows every interested party to run their projects, without being
funded.

Accounts are registered at a FED4FIRE authority and then used to create
new projects, similar to PlanetLab and GENI. The architecture consists of
multiple testbed environments, all aggregated under the FED4FIRE initia-
tive. By the nature of this very heterogeneous design, the management of
the environment is much more complicated than in SCIONLab. [9]

5https://www.fed4fire.eu/
6Information and Communication Technology

13

https://www.fed4fire.eu/
https://www.fed4fire.eu/




Chapter 4

Requirements Engineering

With the introduction of SCIONLab, SCIONLab Coordination Service now
plays a significant role in the SCIONLab Experimentation Environment. Be-
cause of this, a set of new requirements arose, focusing on making the ser-
vice an intuitive, user friendly tool, while at the same time increasing the
robustness of the system. This shift from a mediator to an online account
management tool, allowing users to register accounts and download their
SCION configurations in order join the network with minimal overhead, de-
mands an extension of initial requirements.

4.1 Functional Requirements

To make SCIONLab Coordination Service meet the functionality outlined above,
the following requirements were gathered:

1. A mechanism to verify users’ email addresses:
This increases the authenticity of registered accounts. This also ensures
that users can be contacted by email.

2. A mechanism to manually activate users who signed up successfully:
Not all users should immediately be granted access to SCIONLab Co-
ordination Service. Administrators need to be able to audit registration
requests.

3. A mechanism to protect the service against automated account creation:
This safety measurement protects the service from spam and the cre-
ation of fake accounts.

4. New functionality is validated using CircleCI’s testing environment:
This increases development productivity and ensures new additions
do not break SCIONLab Coordination Service.

15



4. Requirements Engineering

5. A fast and easy way to deploy the service onto multiple machines:
Since SCIONLab Coordination Service is evolving quickly, it is required
that it can be deployed onto the target machine effortlessly.

6. A system for sending notifications to users:
Users should be notified if the status of their ASes change or when
new versions of SCION are available.

7. Implementation of missing APIs between Coordination Service and the Local
Management Service:
This ensures flawless operation of SCIONLab Coordination Service in its
role as mediator.

8. A visualization of the SCIONLab Experimentation network accessible by
users:
This makes it easy for new users to get an overview of the SCIONLab
network and helps them join an ISD.

4.2 Non-Functional Requirements

Non-Functional requirements comprise the following points:

1. SCIONLab Coordination Service aims to be an easy to use tool.

2. None of its functionality should require the user to invest a great
amount of work.

3. It is preferred to hide as much complexity as possible from users.

4. The web interface of the service is required to be fast, clean and re-
sponsive, since it will be amongst the first impressions users get of
SCION.

5. The web interface needs to be visually appealing, both on desktop and
mobile devices.

6. In terms of maintainability, SCIONLab Coordination Service aims for
easy extensibility as the project evolves fast and new requirements
need to be integrated with minimal effort.

16



Chapter 5

Architecture Overview

5.1 Design Overview

Figure 5.1 shows an overview of the architectural design of SCIONLab Coor-
dination Service. All the components and services are described in detail in
the following sections.

Figure 5.1: Schematic overview of SCIONLab Coordination Service architec-
ture, showing its components and the services it uses

17



5. Architecture Overview

5.2 Components

In the following sections, component denotes a part that directly belongs to
the SCIONLab Coordination Service architecture.

5.2.1 Database

SCIONLab Coordination Service uses a MySQL database as storage system.
MySQL is one of the most widely used relational database management
systems. In this project a free to use, open-source version is used. It stores
basic entities such as users, their corresponding accounts, ASes deployed by
users and connection requests sent between ASes. If a user makes use of a
virtual machine to run SCION, configurations for this set up are stored as
well. Another purpose is to keep track of the state aforementioned entities
are in. It directly interfaces with the back end web server which is the only
component it receives queries from.

5.2.2 Back End Server

The centre piece of the SCIONLab Coordination Service is the back end server.
It interfaces with all the other components via a set of well defined APIs,
therefore functioning as a mediator. It provides the following functionality:

• Serving web pages to the SCIONLab Coordination Service web interface

• Processing of API calls received from the SCIONLab Coordination Ser-
vice web interface

• Processing of API calls received from SCION Local Management Service

• Controlling access to resources

• Preparing emails and handing them over to Postmark servers for send-
ing

• Processing and manipulating data retrieved from the database

5.2.3 Web Interface

The web interface is the front end part of the SCIONLab Coordination Service.
It is the graphical interface between users and the system. It closely interacts
with the back end server, to which it makes API calls and from which it
receives all required data. The following functionality is offered by this
component:

• Ability to register new users

• Login for existing users

18



5.3. Services

• A personal page per user showing account details and allowing to
download a SCIONLab VM image

• An administrator panel for managing pending user registrations

• A landing page for users, successfully verifying their email address

5.3 Services

SCIONLab Coordination Service makes use of multiple services to outsource
certain tasks. These services are described in the subsections that follow.

5.3.1 Postmark

SCIONLab Coordination Service uses Postmark1 for email sending. An early
requirement was to use a local MTA2. However, as outlined in Section 6.2.1,
this proved to be very unreliable. The decision was then to switch to an
external provider that handles the complexity. Postmark guarantees fast and
reliable delivery of all transactional emails sent by SCIONLab Coordination
Service. [10]

5.3.2 Google reCAPTCHA

As a measurement against bots that create fake SCIONLab accounts the web
interface of SCIONLab Coordination Service contains a CAPTCHA3 widget
which needs to be solved in order to create an account. SCIONLab Coordina-
tion Service makes use of the Google reCAPTCHA service for implementing
this functionality.

5.4 Continuous Integration

CircleCI4 is a continuous integration utility that, once set up for a project,
automatically runs unit tests for newly added code using cloud technolo-
gies. The feedback produced includes a comprehensive list of all tests it ran,
showing which tests failed and for what reasons. This enables the SCIONLab
Coordination Service development team to validate pull requests before they
are merged into the master branch. CircleCI tightly ties into GitHub5, show-
ing the outcome of the test suite directly on the pull request page.

1https://postmarkapp.com/
2Mail Transfer Agent - The software running on an email server
3Completely Automated Public Turing test to tell Computers and Humans Apart
4https://circleci.com/
5https://github.com/

19

https://postmarkapp.com/
https://circleci.com/
https://github.com/
https://postmarkapp.com/
https://circleci.com/
https://github.com/


5. Architecture Overview

Additionally, new code is reviewed using Reviewable6. Reviewable keeps
track of changes, as pull requests evolve with new commits. To be merged,
all tests on CircleCI must pass and all discussions on Reviewable must be
resolved.

5.5 Deployment

Manually setting up a SCIONLab Coordination Service instance on a remote
machine requires many steps. Hence, doing it often and for multiple ma-
chines very quickly becomes a cumbersome task. To automate this process
we use Ansible7. Ansible is an agentless IT automation engine with the goal
to end repetitive tasks. It modifies a system in such a way that it matches
the state described in configuration files, the playbooks. This makes the
deployment, if the playbook is written carefully, idempotent.

6https://reviewable.io
7https://www.ansible.com/

20

https://reviewable.io
https://www.ansible.com/
https://reviewable.io
https://www.ansible.com/


Chapter 6

Implementation

The following sections contain in-depth descriptions of the design and im-
plementation process of major additions developed throughout this thesis.
Less extensive improvements, addressing the security and maintainability
of SCIONLab Coordination Service, are described in appendix A.

6.1 Initial State

At the start of this thesis, a basic version of SCIONLab Coordination Service
had already been implemented. The implementation consisted of the back
end server written in Go1, the web interface implemented in AngularJS2 and
the MySQL3 database. While operational, SCIONLab Coordination Service
was lacking desired functionality. Relevant for this thesis were particularly
the weak user registration process, which did not perform any checks to en-
sure validity of submitted data. When logging in, users were presented with
a simple page, merely showing credentials needed to connect to SCIONLab.
It was not possible to download configurations and virtual machine images
for running SCION. Furthermore, SCIONLab Coordination Service had no way
of communicating with users via email.

This basic implementation was enhanced with new functionality as described
in the rest of this chapter.

6.2 Email Address Verification

Two options were evaluated for email verification. Email callback verifica-
tion and verification based on email exchange.

1https://golang.org/
2https://angularjs.org/
3https://www.mysql.com

21

https://golang.org/
https://angularjs.org/
https://www.mysql.com
https://golang.org/
https://angularjs.org/
https://www.mysql.com


6. Implementation

Figure 6.1: Sequence diagram showing the messages exchanged for the
Email Verification feature

Email callback verification finds its use mostly as anti-spam measure in
SMTP4 servers. The verification is carried out in the same way as send-
ing an email to the target email address. However, instead of following
through and sending actual email content, the process is aborted as soon
as the remote mail exchanger accepts or rejects the recipient address as in-
valid. The response is the same ”OK” or ”Unknown user” as when running
the protocol with the intent to send an email. [11] Email callback verifica-
tion, however, suffers from unreliability [11] which makes it not suitable for
SCIONLab Coordination Service.

Instead, a robust approach based on email exchange was chosen. Upon
registration users receive a link with a unique identifier. When they follow
the link this is registered by the system and the users’ email addresses are
marked as verified. Figure 6.1 shows a message sequence diagram of the
process implemented.

4Simple Mail Transfer Protocol

22



6.2. Email Address Verification

Figure 6.2: Result of SpamAssassin ran against local Exim SMTP server (Run
on Mail-Tester)

Figure 6.3: Authentication report for the local Exim SMTP server (Run on
Mail-Tester)

6.2.1 Email package

As already mentioned in Section 5.3.1, the initial requirement was to support
a local SMTP server for sending emails. Since SCIONLab Coordination Service
originally did not have the ability to send emails, a new, self-written email
package was added to the back end server. It was communicating with an
Exim5 instance running on the same server. Extensive testing showed that
the approach of supporting and maintaining a local MTA is too complex to
implement in a reliable fashion for this project. While tweaking the email
headers and content was sufficient for the email not to be marked as spam
by SpamAssassin6 (see Figure 6.2), missing MX Records7 and absent DKIM8

authentication (see Figure 6.3) often caused emails to not reach the inbox
of users. It was then decided to outsource this complexity to Postmark, as
described in Section 5.3.1. As a result, the email package was changed to
make use of Postmark’s APIs, instead of interfacing with the local MTA.
The outcome of the same spam detection and authentication tests ran with
Postmark as mail provider are shown in Figures 6.4 and 6.5.

5Exim is a popular MTA for UNIX based systems
6A sophisticated spam filter: http://spamassassin.apache.org/
7Mail Exchange Resource Record - A record specifying a mail server in the DNS system
8DomainKeys Identified Mail - a method to detect email spoofing

23

https://www.mail-tester.com/
https://www.mail-tester.com/
http://spamassassin.apache.org/
http://spamassassin.apache.org/


6. Implementation

Figure 6.4: Result of SpamAssassin ran against Postmark (Run on Mail-
Tester)

Figure 6.5: Authentication report for Postmark (Run on Mail-Tester)

24

https://www.mail-tester.com/
https://www.mail-tester.com/
https://www.mail-tester.com/


6.2. Email Address Verification

Listing 6.1: API signature for verifying an email address
1 //email v a l i d a t i o n
2 router . Handle ( ”/api/ver i fyEmai l /{uuid}” , loggingChain . ThenFunc (
3 r e g i s t r a t i o n C o n t r o l l e r . VerifyEmail ) )

6.2.2 Adapted Components

Apart from the added email package, other components had to be adapted
to implement the feature. The following functionality was added:

User information on Web Interface

On the web interface, an alert box was integrated on the registration page.
Upon successful registration it asks the user to check his emails. Otherwise
it displays an error corresponding to the problem that occurred.

Email creation

The existing code to register a new user was extended to additionally pre-
pare a personalized email, containing the verification link. This email then
gets sent using the email package. The unique identifier contained in the
link is stored in the database together with the user information. This al-
lows for a direct mapping between user and identifier.

Verification API

A new API was added for handling email address verification requests. This
API gets called by the user’s web browser when following the confirmation
link. Listing 6.1 shows the signature of the API. ”uuid” denotes the per-user
unique identifier.

Handler Function

A new handler function which gets invoked by the above API call. It checks
that the identifier sent in the request is valid and belongs to a user with a not
yet verified email address. If the identifier is valid, the corresponding user
is set to verified and a confirmation page gets served to the web browser. If
not, an error is logged and forwarded to the web browser.

Confirmation Page

A confirmation page informing the user about the successful verification
process was added to the web interface. This is the page served by the

25



6. Implementation

handler function on successful verification. It offers a shortcut to the login
page.

6.3 Manual User Activation

The manual user activation feature builds on top of the email verification
system. After verifying the email address a user should not immediately
be granted access to SCIONLab Coordination Service. A second verification
step is required. The user needs to be activated. To make the process of
user activation as automated as possible we distinguish between two cases.
Either the user’s email address is on a list of pre-defined, trusted domain
names. In this case the activation is done automatically. In case the email’s
domain name is not on the list, the user has to be manually approved by
an administrator. Manual activation happens through a newly designed
administrator panel added to the web interface. The process with it’s two
cases is outlined in Figure 6.6. The notification emails sent to administrators
and users make use of the new email package introduced for the email
verification system.

6.3.1 Role based access control

In order to activate a regular user by an administrator the concept of differ-
ent user groups had to be introduced to SCIONLab Coordination Service. For
this purpose the system was adapted to support a simple role based access
control model (RBAC). Instead of granting special rights to individual users
each user gets instantiated with a role that reflects the rights this user should
possess. This model easily supports many different roles with distinct sets
of permissions. However, for the user activation feature only two roles were
needed; an administrator role and a regular user role. The regular user role
is the role assigned to standard users when signing up through the web in-
terface of SCIONLab Coordination Service. The administrator role possesses
all the permissions of the regular user role and additionally the ability to
log in to the administrator panel via the web interface, from where regular
users can be activated.

6.3.2 Adapted Components

On top of the changes made to implement the RBAC model the following
enhancements were made to support the user activation feature:

Admin User Creation

We mentioned above that creating a user through the web interface assigns
the regular user role. In order to bootstrap administrator creation, SCIONLab

26



6.3. Manual User Activation

Figure 6.6: Sequence diagram showing the messages exchanged for the Man-
ual User Activation feature

Coordination Service was extended to accept command line arguments that al-
low the creation of administrators on system start up. Administrators could
then be used to create other administrators. However, such functionality is
not in place yet.

Activation API

Activating users through the administrator panel requires the web interface
to issue two types of requests to the back end server (see Figure 6.6). First,
it retrieves a list of all verified, not yet activated users. Then, for a selected
user, it issues an activation command. The signature of these two API calls
are shown in Listing 6.2.

27



6. Implementation

Listing 6.2: API signatures for loading unactivated users and for activating
users

1 // user a c t i v a t i o n
2 router . Handle ( ”/api/loadUnactivatedUsers ” , loggingChain . ThenFunc (
3 l o g i n C o n t r o l l e r . LoadUnactivatedUsers ) )
4 router . Handle ( ”/api/ a c t i v a t e U s e r ” , loggingChain . ThenFunc (
5 l o g i n C o n t r o l l e r . Act ivateUser ) ) . Methods ( ”POST” )

Handler Functions

Corresponding to the APIs in Listing 6.2, SCIONLab Coordination Service was
extended with two new handler functions. ”LoadUnactivatedUsers” first
checks if the request was issued by an administrator. If this is the case it
retrieves a list of all verified, inactive users from the database and sends it
back in the HTTP response. Otherwise an error is sent to the web interface.

The second handler function, ”ActivateUser” , performs the same adminis-
trator authentication check and, on success, activates the user corresponding
to the email address contained in the request. If the authentication fails, the
handler responds with an error.

Email Notifications

Using the email package introduced in Section 6.2.1, new notification emails
were added to SCIONLab Coordination Service:

An email gets sent to all administrators when there are new users waiting to
be activated in the administrator panel. This ensures that users who can not
be activated automatically are not waiting too long for their activation. This
email is sent once there are pending users, rather than for every individual
user.

When a user gets manually activated, an email informing about the changed
status gets sent to that user. It contains a link to the login page of the web
interface.

Pre-defined List

In Section 6.3 we mentioned that users with a trusted email address get
activated automatically after they verify their email address. In order to
implement this feature, trusted email domain names are collected in a list
that comes as part of the SCIONLab Coordination Service configuration.

The following formats are possible:

• example@domain.tld (full email address)

28



6.4. CAPTCHA Integration

• domain.tld (domain & TLD9)

• sub1...sub2.domain.tld (subdomains & TLD)

• tld (TLD only)

Upon successful verification, it is checked whether or not the email is on the
list. If the address matches an entry, it is immediately activated. Otherwise
the user must go through the manual activation process.

Administrator Panel

A new administrator panel was added to the web interface. It displays
a table containing all verified, inactive users together with their relevant
information like name, email address and organisation. Individual users
can be activated via an activation button.

Confirmation Page

The confirmation page displayed when users follow the email verification
link was revamped to provide users who can not be activated automatically
with information about the extended activation process.

6.4 CAPTCHA Integration

Fake accounts can negatively impact the performance of a system, and with
email sending involved in the registration process, bots can abuse SCIONLab
Coordination Service for spamming. As counter measurement against such
malicious behaviour, a CAPTCHA was placed on the registration page. The
interaction of users with the CAPTCHA and its overall integration into
SCIONLab Coordination Service can be seen in Figure 6.7.

6.4.1 Google reCAPTCHA

For SCIONLab Coordination Service, Google reCAPTCHA10 was chosen as
CAPTCHA provider for a variety of reasons: Since reCAPTCHA is the most
popular CAPTCHA service many users will be familiar with how it works.
[12] Also, thanks to its advanced risk analysis which observes a user’s inter-
action with the website to infer whether a user is human, often users are not
forced to solve a challenge to pass the Turing test. A mere click on a check
box is enough to pass. [12] This effortless verification for human users com-
plies with the non-functional requirements of SCIONLab Coordination Service
outlined in Section 4.2. Furthermore, reCAPTCHA is very well supported
and documented by Google which makes implementation straight forward.

9Top Level Domain
10https://www.google.com/recaptcha/intro/android.html

29

https://www.google.com/recaptcha/intro/android.html
https://www.google.com/recaptcha/intro/android.html


6. Implementation

Figure 6.7: Sequence diagram showing the exchanged messages for the
CAPTCHA implementation

30



6.4. CAPTCHA Integration

Listing 6.3: API signatures for registering users and loading the captcha site
key

1 // user r e g i s t r a t i o n
2 router . Handle ( ”/api/captchaSiteKey ” , loggingChain . ThenFunc (
3 r e g i s t r a t i o n C o n t r o l l e r . LoadCaptchaSiteKey ) )
4 router . Handle ( ”/api/ r e g i s t e r ” , loggingChain . ThenFunc (
5 r e g i s t r a t i o n C o n t r o l l e r . R e g i s t e r ) ) . Methods ( ”POST” )

reCAPTCHA uses a set of keys to fulfill its task. The web page contain-
ing the reCAPTCHA must be registered to obtain a site key and a secret
key. The site key is used to create reCAPTCHA response keys for users
passing the Turing test. This response key then gets verified by sending it
to a reCAPTCHA server together with the secret key. Additionally, the re-
CAPTCHA server provides the reCAPTCHA widget on the web page with
challenges to be solved.

6.4.2 Adapted Components

In order to implement the reCAPTCHA for the registration page of the web
interface the following changes had to be made to the system:

CAPTCHA API

On the web interface reCAPTCHA must be instantiated with the site key
corresponding to the web page it is placed on. When the page loads this
site key is retrieved via an API call from the back end server. This offers
the convenience of having all keys stored in the main configuration file of
SCIONLab Coordination Service rather than hard coding the site key into the
web page. Like this, if new keys need to be installed or SCIONLab Coordi-
nation Service is deployed onto another machine, only the configuration file
has to be changed.

The response key gets appended to the user information as an attribute and
is sent using the existing registration API call to the back end server where
it is validated together with other user information.

The described endpoints are shown in Listing 6.3

Handler Functions

The newly added ”LoadCaptchaSiteKey” handler retrieves the site key from
the configuration and hands it over to the web interface where it is used to
instantiate the reCAPTCHA.

31



6. Implementation

When a user submits his registration information, the existing ”Register”
handler is triggered. It reads the user data, including the response key, from
the request and performs validity checks on the submitted information. The
following new check was added to this phase: The site key is sent together
with the secret key to the reCAPTCHA sever, which in turn verifies whether
or not the response key is valid for the site specified by the secret key. Here,
communication with the reCAPTCHA server is done using the third party
haisum/recaptcha11 package. If all checks pass, the user’s information is
stored in the database.

CAPTCHA Widget on Registration Page

Using the VividCortex/angular-recaptcha12 AngularJS directive, the reCAPTCHA
widget was placed on the registration page. Solving the reCAPTCHA was
made mandatory for sending registration data to the back end.

6.5 CircleCI Integration

In Section 5.4 we talked about CircleCI and how it helps with the software
verification process. Every time a pull request is updated with new code
CircleCI runs a defined suite of tests in the cloud. For this to work CircleCI
must know about the project environment, what dependencies are used and
what tests it has to run. This information is pulled from a configuration
file that resides in a special folder inside the SCIONLab Coordination Service
code base. These configurations are processed and used to create a minimal,
virtual environment in the CircleCI cloud, which is able to run the code to
be tested. The contents of the configuration file is shown in Listing 6.4.

The following subsections describe how CircleCI is set up in order to run
the test suite.

6.5.1 Environment

The easiest way to set up the required environment is to use a pre-defined
Docker13 image that comes bundled with all the tools needed for the testing
and debugging process.

As can be seen on line 6 and 12 in Listing 6.4, two Docker images are used:
The ”circleci/golang:1.8” image is an image built by CircleCI specifically for
testing Go code. It comes with the Go 1.8 environment and numerous other
useful tools, such as Git and SSH, pre-installed.

11https://github.com/haisum/recaptcha
12https://github.com/VividCortex/angular-recaptcha
13Docker bundles software in isolated containers, then runs these containers on a host

system using virtualization: https://www.docker.com/

32

https://github.com/haisum/recaptcha
https://github.com/VividCortex/angular-recaptcha
https://www.docker.com/
https://github.com/haisum/recaptcha
https://github.com/VividCortex/angular-recaptcha
https://www.docker.com/


6.5. CircleCI Integration

Listing 6.4: CircleCI project configurations
1 −−−
2 j o b s :
3 bui ld :
4 docker :
5 −
6 image : ” c i r c l e c i /golang : 1 . 8 ”
7 −
8 environment :
9 − MYSQL ROOT PASSWORD: development pass

10 − MYSQL DATABASE: s c i o n c o o r d t e s t
11
12 image : ” c i r c l e c i /mysql : l a t e s t ”
13 s teps :
14 − checkout
15 − run : ”cp conf/development . conf . d e f a u l t conf/development . conf ”
16 − run :
17 name : Wait f o r db
18 command : dockerize −wait tcp :// l o c a l h o s t : 3306 −t imeout 1m
19 −
20 run : ”go get −v −t −d . / . . . ”
21 −
22 run : ”go t e s t −v . / . . . ”
23 working directory : ”/go/ s r c /github . com/netsec−ethz/scion−coord ”
24 vers ion : 2

”circleci/mysql:latest” additionally installs the latest version of MySQL in the
test environment, which is crucial since tests involve storing to and loading
from the database. This image also allows setting up the database in a way
such that it conforms to what SCIONLab Coordination Service is expecting.
(see lines 8 to 10 of Listing 6.4)

6.5.2 Dependencies

SCIONLab Coordination Service uses many dependencies which all need to be
installed for tests to run successfully. Dependencies are downloaded using
the Go command ”go get -v -t -d ./...” . This downloads all needed packages
and writes the name of each package to the test log.

6.5.3 Testing

”go test -v ./...” looks for all test files in the code base and then runs the test
cases one by one. For each test case it writes status information to the log
file stating whether the test failed or not. In case of failure, a corresponding
error message is logged as well.

33



6. Implementation

Listing 6.5: Excerpt of Ansible tasks, used to set up SCIONLab Coordination
Service

1 −−−
2 − name : I n s t a l l Scion Coord Software
3 apt : name={{ item }}
4 with i tems :
5 − g i t
6 − golang−go
7 − python−mysqldb
8 − mysql−server
9

10 − name : Create MySQL root user
11 mysql user :
12 name : root
13 password : ”{{ mysql pass }}”
14 host : l o c a l h o s t
15 login password : ”{{ mysql pass }}”
16
17 − name : Create database
18 mysql db :
19 name : ”{{ mysql db }}”
20 login password : ”{{ mysql pass }}”

Listing 6.6: Excerpt of the Ansible parameter file used for SCIONLab Coordi-
nation Service

1 mysql db : s c i o n c o o r d t e s t
2 mysql pass : development pass

6.6 Deployment with Ansible

In Section 5.5 we described how Ansible supports the deployment process.
As with CircleCI, Ansible needs instructions to put the target machine into
the right state and to deploy SCIONLab Coordination Service correctly. The
most important configurations are described below.

6.6.1 Hosts

The host configuration file contains sections for different roles to deploy.
Within each section, the addresses of the machines assigned to this role
are specified; therefore creating a one-to-many relation between roles and
machines.

In the case of SCIONLab Coordination Service there is only one role, as the
complete architecture runs on a single machine. However, by specifying
multiple addresses, the service could easily be replicated for redundancy.

34



6.6. Deployment with Ansible

6.6.2 Files

Ansible is capable of copying entire files to a target machine. In SCIONLab
Coordination Service this is used to apply SSH keys and a sudoers file14 to the
deployment environment. This sets up the environment with the necessary
user account permissions, required to run SCIONLab Coordination Service.

6.6.3 Parameters

Certain parameters used in tasks are confidential, do change frequently or
are not the same for every target machine. To avoid duplication of playbooks,
Ansible allows the use of place holders in tasks.

For simplicity, place holders used in SCIONLab Coordination Service are com-
piled in a dedicated parameter file, together with their corresponding values.
Lines 13 and 15 of Listing 6.5 show how place holders are used in a task to
confidentially set the password for the MySQL root user. Listing 6.6 shows
the corresponding excerpt of the parameter file.

6.6.4 Tasks

Ansible runs for each target machine a set of tasks (a playbook), dependant
on the assigned role. If tasks are written carefully, the process of running
them is idempotent, which means that running the tasks multiple times
has no further effect. Idempotence is one of the core concepts of Ansible.
It allows tasks to be written in a descriptive way, such that they only get
executed when the current state of the machine violates the desired end
state. This speeds up the deployment process and prevents data loss caused
by writing files which already exist. After completing all tasks, the target
machine is in a state that conforms to the state described by the playbook.

Tasks for deploying SCIONLab Coordination Service consist of installing re-
quired packages, setting up the database, applying SSH keys and checking
out the code base. Listing 6.5 shows an excerpt of the playbook used to
deploy SCIONLab Coordination Service. Lines 2-8 show how required pack-
ages are installed. As described above, if a package already exists it will not
be downloaded again. This speeds up the deployment. Similarly, tasks for
setting up the database (lines 10-20) only run when needed to reach the end
state, preventing data loss in case the database already exists.

14A file containing rules that users must obey when the sudo command is used

35





Chapter 7

Evaluation

As of writing, SCIONLab Coordination Service is running with features devel-
oped throughout this thesis actively in use. It is deployed on an AWS1 in-
stance and reachable via https://www.scionlab.org and https://coord.

scionproto.net. Several beta testers successfully used SCIONLab Coordina-
tion Service to register, download and install their own SCION AS; not least
enabled by functionality introduced as part of this thesis. These enhance-
ments contribute to the goal of SCIONLab Coordination Service being a key
component for opening up the SCIONLab Experimentation Environment while
at the same time maintaining its simplicity.

7.1 Deployed Components

The following sections evaluate the enhancements and additions described
in Chapter 6 based on the effect they take on SCIONLab Coordination Service
in its current state and how they are enablers for future improvements.

7.1.1 Robust User Registration

The process of registering an account on SCIONLab Coordination Service was
greatly improved with respect to authenticity of users, by incorporating the
email verification system (Section 6.2) as well as the reCAPTCHA (Section
6.4). This leads to better control over resources made available to users.
Figure 7.1 shows the new registration form with the integrated reCAPTCHA
widget and the process of validating it. If a user is not exhibiting behaviour
suspicious to the reCAPTCHA algorithms, no challenge is required to be
solved. Therefore, this protection mechanism does not interfere with the
registration process the user goes through.

1Amazon Web Service: https://aws.amazon.com/de/

37

https://aws.amazon.com/de/
https://www.scionlab.org
https://coord.scionproto.net
https://coord.scionproto.net
https://aws.amazon.com/de/


7. Evaluation

(a) reCAPTCHA not solved (b) reCAPTCHA challenge (c) reCAPTCHA solved

Figure 7.1: reCAPTCHA verification process; challenge (b) is not necessary
if the user behaves humanly

For users who have not been invited to use SCIONLab, a registration with-
out solving the reCAPTCHA is not possible; neither via web interface nor
by exploiting the relevant API directly. Figure 7.2 shows the error message
presented when a user does not solve the reCAPTCHA in the registration
form. Figure 7.3 shows the HTTP responses received when addressing the
registration API directly; once with an invalid key and once by performing
a replay attack.

Figure 7.2: User with unsolved reCAPTCHA prevented from registering

38



7.1. Deployed Components

(a) Invalid reCAPTCHA response key (b) Duplicate reCAPTCHA response key

Figure 7.3: Error messages returned when trying to circumvent the re-
CAPTCHA with invalid or duplicate keys. The generated POST requests
mimic the behaviour of a bot trying to register an account. (requests issued
using HttpRequester)

When a user does sign up successfully a prompt with further instructions is
shown. (see Figure 7.4). Figure 7.5 shows the email containing the verifica-
tion link sent to the user and the confirmation page loaded upon following
the link.

Figure 7.4: Instructions presented to users upon successful registration

Users who registered with an email address that can not be verified are not
granted access to SCIONLab Coordination Service. (see Figure 7.6)

This renovated process stands in contrast to the initial basic implementation
that allowed users to register with an email address they do not own or
which does not exist at all. Also, by exploiting the exposed API endpoint,
it was easily possible to automate the registration process in order to spam

39

https://addons.mozilla.org/de/firefox/addon/httprequester/


7. Evaluation

(a) Verification email sent to user (underlined in red the personal-
ized identifier)

(b) Confirmation page when following personalized link

Figure 7.5: Email verification process with (a) email sent to user and (b)
confirmation page

the system. Combined, the email verification system and the reCAPTCHA
implementation actively prohibit system abuse.

7.1.2 Invitation Based Registration

The manual user activation feature outlined in Section 6.3 is not being used
in SCIONLab Coordination Service as of writing. The process requires new
users to go through yet another round of verification. While originally in-
tended, this proves to be cumbersome both for users as well as system ad-
ministrators. Since every account has to be activated manually an adminis-
trator must log in to the administrator panel frequently in order to not cause
delays. This interferes with the requirement of SCIONLab Coordination Ser-
vice being a low overhead and responsive management tool. Instead, a more
automated process is envisioned. Figure 7.7 shows the administrator panel
for the web interface as developed for the manual user activation feature.

For above reasons, core components such as the role based access control
model and the administrator web panel were leveraged by the development

40



7.1. Deployed Components

Figure 7.6: User without verified email address prevented from logging in

Figure 7.7: Administrator panel on web interface used to manually activate
users

team to build a new, invitation based registration model. Via the web panel,
administrators can send out invitation emails to specific users. These users
are pre-approved and do not go through a verification process.

The components developed for manual user activation (Section 6.3) are ex-
tensible. The role based access control model provides a framework for
adding additional roles with different sets of permissions to SCIONLab Co-
ordination Service as needed. Also, the administrator panel can be extended
to handle other administration related tasks.

7.1.3 Email Functionality

Apart from the email verification process multiple new improvements made
to SCIONLab Coordination Service rely on the email package introduced in
Section 6.2.1. For one, other developers were able to implement a notifi-

41



7. Evaluation

cation system, informing users about status changes of their running ASes.
Additionally, the aforementioned invitation based registration system makes
use of the email package for sending invitations to recipients.

Email sending in SCIONLab Coordination Service is easily extensible with new
email templates for use in future enhancements. The email package pro-
vides high reliability for sending transactional emails as already discussed
in Section 6.2.1. (see Figures 6.4 and 6.5)

7.1.4 Integrated Testing

CircleCI integration (Section 6.5) has been set up for SCIONLab Coordination
Service and used by the development team to validate code contributions.
Currently, the test suite of SCIONLab Coordination Service consists of 3 unit
tests with a total of 15 test cases. CircleCI takes 45-70 seconds to process
these tests. This includes building the environment, downloading source
code and dependencies and then running the tests. Figure 7.8 shows the
output generated for a failed test on CircleCI.

This integration does not require any work for adding additional tests, apart
from writing the tests themselves, as they will be picked up and run by
CircleCI automatically.

Figure 7.8: Failed test on CircleCI

7.1.5 Effortless Deployment

The Ansible playbook for smooth deployment of SCIONLab Coordination Ser-
vice onto remote machines was successfully used throughout this thesis to

42



7.2. Requirements Evaluation

deploy newly developed code onto an AWS instance set up for testing pur-
poses. However, the playbook has not been used in production. In the
meantime adjustments are necessary to adapt the playbook to the fast evolv-
ing SCIONLab Coordination Service code base. The reason these adjustments
are necessary is that changes made to the service have not been reflected in
the Ansible playbook. Most notably, Ansible must be advised to install addi-
tional files, such as encryption keys for VPN based connections, to produce
the required environment for the service to function correctly with newly
introduced VPN connections.

Nonetheless, if maintained, the framework provided could prove useful for
future deployments, especially when moving towards a replicated set up of
SCIONLab Coordination Service where, manual deployment becomes too time
consuming.

7.2 Requirements Evaluation

This section summarizes to what extent the requirements gathered in Chap-
ter 4 have been satisfied by the work done in this thesis.

Functional Requirements

1. A mechanism to verify users’ email addresses:
This requirement is considered achieved by implementation of the
email address verification system. (Section 6.2). The evaluation of
this system has been discussed as part of Section 7.1.1

2. A mechanism to manually activate users who signed up successfully:
A mechanism satisfying this requirement has been implemented (Sec-
tion 6.3). Even tough the feature has not been deployed, for reasons de-
picted in Section 7.1.2, it nonetheless had been functional and, more im-
portantly, provided components to be reused for the invitation based
registration process. Therefore, this requirement has been achieved.

3. A mechanism to protect the service against automated account creation:
This feature has been implemented as presented in Section 6.4 and its
functional evaluation has been shown in Section 7.1.1. This require-
ment is thereby fully achieved.

4. New functionality is validated using CircleCI’s testing environment:
Implemented (Section 6.5) and deployed, this functionality has been
proven to work as described in Section 7.1.4. By these means, the
requirement is regarded as fulfilled.

5. A fast and easy way to deploy the service onto multiple machines:
An Ansible playbook had been designed (Section 6.6) and successfully

43



7. Evaluation

used to deploy SCIONLab Coordination Service onto remote machines
(Section 7.1.5). Newer changes introduced to SCIONLab Coordination
Service, however, have not considered adapting the playbook accord-
ingly. This has left it in a state where it needs adjustments to be fully
functional again.

6. A system for sending notifications to users:
By implementing the package for sending emails (Section 6.2.1) the
foundation for this requirement had been laid. However, as mentioned
in Section 7.1.3, the remaining parts have been added by other devel-
opers, not part of this thesis. While overall fulfilled, only parts of the
solution have been provided by this thesis.

7. Implementation of missing APIs between Coordination Service and the Local
Management Service:
No work has been done with respect to this requirement throughout
this thesis. Therefore, it has not been achieved.

8. A visualization of the SCIONLab Experimentation network accessible by
users:
This requirement has not been worked on and is as a consequence not
achieved by this thesis.

Non-Functional Requirements

For the non-functional evaluation, rather than specifying whether or not
requirements have been achieved, we are interested in what effect changes
made to SCIONLab Coordination Service have on the given constraints.

1. SCIONLab Coordination Service aims to be an easy to use tool:
The improved registration process (functional evaluation in Section
7.1.1) makes the process of registering an account slightly more in-
volved. Apart from that, no changes have been made regarding ease
of use. Overall, SCIONLab Coordination Service retains its simplicity.

2. None of its functionality should require the user to invest a great amount of
work:
The introduction of the email verification process (Section 6.2) increases
the overhead for users by requiring them to check their email inbox.
While making use of email callback verification (see Section 6.2.1)
would have led to less overhead, this solution has been deemed in-
feasible because of its unreliability. The approach taken is considered
the right balance between simplicity and reliability of the feature.

The CAPTCHA provider has been chosen with the goal of simplicity
in mind. As described in Section 7.1.1, reCAPTCHA does not require
users to invest a great amount of work.

44



7.2. Requirements Evaluation

3. It is preferred to hide as much complexity as possible from users:
All implementations made have been designed to require as little user
interaction as possible. As a result, the complexity of added features
is mostly hidden from users. An exception is the email verification
system which has been discussed above.

4. The web interface of the service is required to be fast, clean and responsive,
since it will be amongst the first impressions users get of SCION:
Apart from the added reCAPTCHA widget, the visual appearance of
SCIONLab Coordination Service has not been altered by changes made
in this thesis. It therefore remains clean and user-friendly.

5. The web interface needs to be visually appealing, both on desktop and mobile
devices:
There have been no changes made regarding visual appearance on
different screen sizes in this thesis.

6. In terms of maintainability, SCIONLab Coordination Service aims for easy
extensibility as the project evolves fast and new requirements need to be inte-
grated with minimal effort:
As described in Appendix A, a variety of improvements have been
made with respect to maintainability. Additionally, the implemented
components (Chapter 6) reduce the complexity for developing future
extensions.

45





Chapter 8

Conclusion

8.1 Summary of Achievements

The improvements developed in this thesis are a step towards the envisioned
SCIONLab Experimentation Environment, were interested parties are provided
with a user-friendly management tool to register and download their own
SCIONLab ASes. In particular, the enhancements described in this thesis al-
low the SCIONLab Coordination Service, said management tool, to be opened
up for public use. The achievement of this goal was supported by contribu-
tions made as part of this thesis.

The set of implemented features includes email sending functionality, a new,
robust user registration mechanism, a new access control model, improve-
ments for the engineering team regarding testing, deployment and main-
tainability, as well as many small additions such as error corrections and
code re-factorizations to meet new standards.

Most developed software components were tested and proved to work in
a live environment. Others were leveraged by the development team to
implement additional innovations.

8.2 Future Work

From here, SCIONLab Coordination Service can be further improved by work-
ing on the requirements not addressed by this thesis. These are the following
(numbered as in Section 4.1):

7. Implementation of missing APIs between Coordination Service and the
Local Management Service

8. A visualization of the SCIONLab Experimentation network accessible
by users

47



8. Conclusion

In addition to above requirements, the SCIONLab Coordination Service could
benefit from these enhancements:

• Currently, only one AS can be managed per account. It is a new re-
quirement to increase this limit to support multiple ASes.

• It could be beneficial to have a rate limiting middleware for protecting
APIs exposed by SCIONLab Coordination Service against DoS1 attacks.

• Not all functionality of SCIONLab Coordination Service is covered by
unit tests. Additional tests could minimize manual testing overhead.

• Adapting the Ansible playbook to be used in production would facili-
tate deployment.

• A task runner for front end code could be leveraged to automate repet-
itive tasks, such as minifying and unit testing the web interface.

1Denial of Service

48



Appendix A

Security and Maintainability
Enhancements

A.1 Ensuring Secure Operation

The sections below outline less extensive but nonetheless critical enhance-
ments made to ensure a secure and stable operation of SCIONLab Coordina-
tion Service.

A.1.1 Server Crash on Login

Attempting to log in to SCIONLab Coordination Service with either an empty
email address or an empty password caused the back end server to crash,
effectively taking SCIONLab Coordination Service offline. This was caused by
malfunctioning error handling code, resulting in a nil pointer dereference.
This defect exposed the service to accidental and malicious attacks, threat-
ening its uninterrupted operation.

The security hole was fixed by correcting the handling of empty user infor-
mation submitted to SCIONLab Coordination Service.

A.1.2 Nil Pointer When Accessing User Information

For loading and displaying data corresponding to the right user on the web
interface, SCIONLab Coordination Service depends on user sessions. The code
responsible for validating these sessions contained malfunctioning error han-
dling code which could have led to server crashes caused by nil pointer
deferences.

To secure uninterrupted operation, the faulty code was repaired by correct-
ing the specific error handling.

49



A. Security and Maintainability Enhancements

A.2 Maintainability

The following enhancements were made to increase SCIONLab Coordination
Service’s maintainability. At the same time, they make sure the service oper-
ates flawlessly and retains its compatibility to SCION.

A.2.1 Duplicate Configurations

On startup, SCIONLab Coordination Service loads configurations from a con-
figuration file and stores them in program variables. The goconf1 package
used for this functionality allows configurations to be initialize with default
values in case they are not set in the configuration file. This regularly caused
confusion since certain settings were set in two different places, where chang-
ing it in the wrong place didn’t have any effect.

This duplication was resolved by removing default values for configurations.

A.2.2 Obsolete HTTP Handling Code

Alongside code used in production, SCIONLab Coordination Service contained
dead legacy code for serving web pages, including the web page resources
themselves. This constantly led to confusion since changes made in the
wrong place didn’t have any effect on the system.

The code base was cleaned and restructured by removing unused code and
resources.

A.2.3 Obsolete Database Queries

The package used to interface with the MYSQL database contained queries
which were not needed any more. For the sake of a cleaner code base, these
queries were deleted.

A.2.4 Outdated Dependencies

SCIONLab Coordination Service uses a variety of libraries to offer its function-
ality. These libraries are downloaded and supplied by the vendoring2 soft-
ware govendor3. Because packages were not updated regularly, SCIONLab
Coordination Service was unaware of changes in the main SCION4 code base
it depends on. This led to incompatibility of SCION and SCIONLab Coordi-
nation Service.

1https://github.com/sec51/goconf
2In the context of Go, vendoring denotes the process of copying the software packages a

project relies on and storing them in the project repository.
3https://github.com/kardianos/govendor
4https://github.com/netsec-ethz/scion

50

https://github.com/sec51/goconf
https://github.com/kardianos/govendor
https://github.com/netsec-ethz/scion
https://github.com/sec51/goconf
https://github.com/kardianos/govendor
https://github.com/netsec-ethz/scion


A.2. Maintainability

In order to retain compatibility, govendor was instructed to vendor more
recent packages. The code base was adapted to work with the changes
introduced in SCION.

51





Bibliography

[1] Adrian Perrig, Pawel Szalachowski, Raphael M. Reischuk, and Laurent
Chuat. SCION: A Secure Internet Architecture. Springer Verlag, Aug 2017.

[2] David Barrera, Raphael M. Reischuk, Pawel Szalachowski, and Adrian
Perrig. Scion five years later: Revisiting scalability, control, and isola-
tion on next-generation networks. arXiv e-prints, pages 1–3.

[3] François Wirz. Testbed management and network monitoring system
for future internet architectures, Aug 2016.

[4] Anton Ovchinnikov. Future Internet Architecture Testbed Management Sys-
tem. Aug 2015.

[5] PlanetLab. Node requirements. https://www.planet-lab.org/node/

225, . [Online; accessed 01.10.2017].

[6] PlanetLab. Hosting requirements. https://www.planet-lab.org/

hosting, . [Online; accessed 01.10.2017].

[7] PlanetLab. User’s guide. https://www.planet-lab.org/doc/guides/
user, . [Online; accessed 01.10.2017].

[8] Mark Berman, Jeffrey S. Chase, Lawrence Landweber, Akihiro Nakao,
Max Ott, Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar. Geni:
A federated testbed for innovative network experiments. Computer Net-
works, 61:5 – 23, 2014.

[9] Martin Serrano, Nikolaos Isaris, Hans Schaffers, John Domingue,
Michael Boniface, and Thanasis Korakis. Building the Future Internet
through FIRE. River Publishers, Jun 2017.

[10] Wildbit, LLC. Why postmark? https://postmarkapp.com/. [Online;
accessed 04.09.2017].

53

https://www.planet-lab.org/node/225
https://www.planet-lab.org/node/225
https://www.planet-lab.org/hosting
https://www.planet-lab.org/hosting
https://www.planet-lab.org/doc/guides/user
https://www.planet-lab.org/doc/guides/user
https://postmarkapp.com/


Bibliography

[11] Free Software Foundation, Inc. Sender verification. http://www.

fsf.org/about/systems/sender-verification. [Online; accessed
09.09.2017].

[12] Google. Tough on bots easy on humans. https://www.google.com/

recaptcha/intro/android.html. [Online; accessed 17.09.2017].

54

http://www.fsf.org/about/systems/sender-verification
http://www.fsf.org/about/systems/sender-verification
https://www.google.com/recaptcha/intro/android.html
https://www.google.com/recaptcha/intro/android.html


7KH�VLJQHG�GHFODUDWLRQ�RI�RULJLQDOLW\�LV�D�FRPSRQHQW�RI�HYHU\�VHPHVWHU�SDSHU��%DFKHORU¶V�WKHVLV��
0DVWHU¶V�WKHVLV�DQG�DQ\�RWKHU�GHJUHH�SDSHU�XQGHUWDNHQ�GXULQJ�WKH�FRXUVH�RI�VWXGLHV��LQFOXGLQJ�WKH�

í KDYH�FRPPLWWHG�QRQH�RI�WKH�IRUPV�RI�SODJLDULVP�GHVFULEHG�LQ�WKH�µ ¶�LQIRUPDWLRQ�

í
í
í


	Abstract
	Acknowledgments
	Contents
	Introduction
	Background
	SCION - A Future Internet Architecture
	Network Structure
	Isolation
	Path Selection
	Scalability

	SCION Architecture
	Border Routers
	Beacon Servers
	Path Servers
	Certificate Servers
	Name Servers

	SCION AS Management Framework
	Local Management Service
	SCIONLab Coordination Service

	SCIONLab Experimentation Environment

	Related Work
	PlanetLab
	PlanetLab Node Management

	GENI
	Fed4FIRE

	Requirements Engineering
	Functional Requirements
	Non-Functional Requirements

	Architecture Overview
	Design Overview
	Components
	Database
	Back End Server
	Web Interface

	Services
	Postmark
	Google reCAPTCHA

	Continuous Integration
	Deployment

	Implementation
	Initial State
	Email Address Verification
	Email package
	Adapted Components

	Manual User Activation
	Role based access control
	Adapted Components

	CAPTCHA Integration
	Google reCAPTCHA
	Adapted Components

	CircleCI Integration
	Environment
	Dependencies
	Testing

	Deployment with Ansible
	Hosts
	Files
	Parameters
	Tasks


	Evaluation
	Deployed Components
	Robust User Registration
	Invitation Based Registration
	Email Functionality
	Integrated Testing
	Effortless Deployment

	Requirements Evaluation

	Conclusion
	Summary of Achievements
	Future Work

	Security and Maintainability Enhancements
	Ensuring Secure Operation
	Server Crash on Login
	Nil Pointer When Accessing User Information

	Maintainability
	Duplicate Configurations
	Obsolete HTTP Handling Code
	Obsolete Database Queries
	Outdated Dependencies


	Bibliography

