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Abstract

A central element of designing IT security infrastructures is the logi-
cal segmentation of information assets into groups sharing the same
security requirements and policies, called network zones. As more
business ecosystems are migrating to the cloud, additional demands
for cybersecurity emerge and make the network-zone operation and
management for large corporate networks challenging. In this thesis,
we introduce the new concept of an inter-domain transit zone that se-
curely bridges physically and logically non-adjacent zones in large-
scale information systems, simplifying complex network-zone struc-
tures. With inter-zone translation points, we also ensure communica-
tion integrity and confidentiality while providing lightweight security
policy enforcement. A logically centralized network coordinator en-
ables scalable and flexible network management. Our implementation
demonstrates that the new architecture merely introduces a few mi-
croseconds of packet processing delay.
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Preface

The work done in this thesis has additionally been submitted as re-
search paper [1]. At the time of writing, the manuscript has been sub-
mitted and is undergoing review. This thesis aims to expand on the
paper, giving deeper insights into the different aspects of Mondrian.
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Chapter 1

Introduction

Network zoning has long been an essential part of the Internet security in-
frastructure, which logically partitions network and information assets into
disjoint segments that share the same security requirements and policies,
and functional similarities. Zones define the network boundaries and their
defense requirements by stating the entities populating the zones, the entry
points into the zones, and how traffic is monitored and filtered at these en-
try points. Informally, these zones are realized by a virtualized separation at
layer 2 (e.g., IEEE 802.1q [2]) with firewalls at higher levels governing data
transfers between zones [3].

Each zone is identified by a distinct level of trust, and forms a trusted/un-
trusted relationship with other zones [4]. To realize the unidirectional trust
model, firewalls are considered to be the most viable technology and are
widely used in the current practice. However, operating firewalls in large
enterprises is often challenging for network operators and security archi-
tects. The access control for network zones might be dynamic, and thus it
requires complex management schemes to accommodate a myriad of poli-
cies. While there are advanced technologies such as virtual firewalls [5, 6],
distributed security enforcement [7, 8], and Unified Threat Management
(UTM) [9], newly designed to enforce access control polices in extremely
dynamic networks, network zone management and modeling still remains
cumbersome [10, 11].

Bridging geographically distant network zones is very challenging today. In
general, network zones are created not only for security purposes but also
because of geographical, operational, or organizational factors. Large enter-
prises with geographically distributed branch networks, and possibly col-
laborative partners’ networks need to be interconnected. Given that distant
network zones exchange information over an untrusted network (e.g., the
Internet), there is a risk that the communication exposes security-sensitive
information during transit. To mitigate such threats, administrators leverage
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1. Introduction

additional security mechanisms (e.g., IPsec [12] and SSL-VPN [13]) which
ensure confidentiality and integrity of the transmission over the untrusted
network by encrypting and authenticating the data with securely shared
cryptographic keys. Nonetheless, these technologies bring forth new chal-
lenges such as management scalability [14] and compatibility issues with
other security solutions [15]—universal agreement with business partners
on building collaborative security infrastructure is often problematic.

Mondrian is a new network zoning architecture that secures inter-zone
communication—which operates on layer 3, supporting heterogeneous layer
2 architectures—while ensuring scalable cryptographic-key management and
flexible security policy enforcement. Mondrian flattens the commonly used
hierarchically-complex network zone topologies into a collection of horizon-
tal zones connected to a unified security gateway, called zone Translation
Point (TP), thus simplifying large enterprise networks. By interconnecting
zones through TPs, complex zone restructuring operations become easier
with respect to new zone initializations or zone migrations. The TP ensures
source authentication, zone transfer authorization, and illegitimate access
filtering by acting as a secure ingress/egress point for network zones. A
logically centralized control unit provides management scalability on zone
classification and policy enforcement, and mediates cryptographic key es-
tablishment.

A secure zone transfer is performed in three steps: i) the security gateway
acquires access policies for each network zone from its controller, ii) the
gateway issues a cryptographically protected authorization token if a given
zone transfer request is permitted, and iii) the network forwards only pack-
ets with a valid token. By leveraging the notion of secure tunneling between
two endpoints (i.e., a pair of local and remote TPs), confidentiality and in-
tegrity of the zone transfer packets are ensured, while keeping the overhead
of the authentication process small. For scalable key management, we em-
ploy a key establishment system that enables dynamic key derivation and
ensures perfect forward secrecy.

We provide an implementation of Mondrian that ensures secure zone trans-
fer for both intra and inter-domain communication at line rate, while requir-
ing no network-stack changes from end hosts. We extensively evaluate this
implementation to demonstrate the practical viability of Mondrian. The
results show that the TP introduces negligible processing delay; less than
500 ns of additional delay for intra-domain zone transfer and approximately
2.5 ∼ 3.5µs for inter-domain zone transfer traffic. We further provide in-
depth security and practicality analyses.

In summary, the core of this thesis is Mondrian, a new architecture that
enables secure, flexible and viable network zoning and inter-zone commu-
nication for large enterprise networks. The introduction of an inter-domain
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transit zone enables flexible and cost-efficient zone management by simpli-
fying the hierarchical zone structures commonly used today. A centralized
policy management system for network zones and an efficient key estab-
lishment scheme ensure scalability of Mondrian. An implementation of
the described architecture is available as an open source project.
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Chapter 2

Background

Using a case study we explore how network zoning is realized in modern
enterprise networks, and later we derive the main challenges we confront.

2.1 Case Study

InternetVPN Zone DMZ

Transit Zone

Control Zone

Manage Zone

Warehouse

Employ Zone

Control Zone

DMZ

Headquarter (TRILL)

Branch Site (SPB)

VPN Tunnel (e.g., IPSec)

Leased Line

Figure 2.1: Network zoning use case for large enterprises. Network zones are
realized with heavy use of security middleboxes (e.g., Firewalls).

Most enterprise networks have embraced the notion of layered security clas-
sification, that can be broadly split into intranet, extranet, and opennet [10].
The opennet is the least trusted network (e.g., the Internet) which is an in-
hospitable region where live threats exist, whereas the intranet is the most
trusted network hosting business-critical systems and sensitive information.
Since the intranet has rigorous access control mechanisms to protect infor-
mation assets from exposure to the opennet, enterprises are forced to operate
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2. Background

another security layer (extranet, also known as demilitarized zone or DMZ)
in between, which exposes the publicly accessible services to the opennet,
while reducing the attack surface of the intranet.

Over time, these layered network structures have become more sophisti-
cated [4] due to extreme changes in network environments—diverse de-
mands from customers, partners and employees accessing enterprise net-
works with a variety of devices. As a result, many enterprise networks com-
prise a large number of zones defined by operational, organizational, and
most importantly security factors. Figure 2.1 depicts a real-world use case
for network zones running on inter-domain level with multiple involved
autonomous systems (ASes). They can be categorized into three main types.

Intra-domain Zone Transfer Within a local network, multiple devices such
as servers, databases, and hosts are connected through network switches.
These devices are assigned with a unique IP address that belongs to a logi-
cally isolated network zone. These zones commonly consist of multiple sub-
nets, often realized with a layer 2 virtualization technology (e.g., VLAN).
Each zone is protected by a set of security middleboxes, e.g., firewalls,
intrusion-prevention systems (IPS), and intrusion-detection systems (IDS),
which enforce predefined security policies for all traffic passing through.

To maintain the zone-based trust model, access permission to one zone is
not considered to be valid for other zones. That is, an entity must obtain ac-
cess permissions from all zones on the path when accessing a non-adjacent
zone. This trust model however often complicates policy management and
enforcement, especially for large enterprise networks. To resolve this com-
plication, the current practice introduces the notion of a dedicated zone in
which zone transitions are handled, called Transit Zone.

A transit zone acts like a patch panel, allowing zones to be interconnected
without the need of a dedicated link between each pair of zones (Figure 2.2).
The Transit zone sits in the middle of all the other zones and mediates access
between zones wishing to communicate with each other. It is commonly
comprised of only forwarding devices (e.g., switches), interconnecting the
attached zones via various ingress/egress points on which security middle-
boxes enforce the security policies. In a nutshell, the Transit Zone reduces
the depth of zone hierarchies and thus simplifies the network zone design
and management.

Inter-domain Zone Transfer To ensure that geographically distributed zones
can securely communicate with each other, enterprises employ various net-
working technologies. The most common choice is connecting two remote
sites with a physical private line, (e.g., layer 2 circuit). Enterprises can lease
these lines from Internet service providers and make use of them to bridge
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2.2. Challenges

VPN
Zone

Control 
Zone

DMZ

Warehouse

VPN
Zone

Control 
Zone

DMZ

Warehouse

Transit
Zone

Figure 2.2: Two ways of structuring network zones. The use of a transit zone on
the right side reduces the number of required links.

local networks. However, purchasing private lines is costly and might come
along with trust issues towards the service provider.

An alternative is a virtual private network (VPN). A VPN uses cryptographic
primitives to create a virtual tunnel between two local networks, preventing
information leakage during transmission over the public Internet. While the
VPN technology ensures data confidentiality, typically yet another layer of
overlay protocols is required to achieve virtual separation of zones. The use
of such overlay protocols, however, has the disadvantage that all intercon-
nected sites need to deploy the same protocol since such protocols generally
do not offer interoperability.

Traffic from the Internet Traffic not originating in cooperative (trusted)
networks can be classified into the following three types: i) public traffic,
ii) authorized traffic, and iii) malicious traffic. The first case covers normal
customers who access the enterprise’s public services, e.g., Web servers.
This traffic in general ends up at the demilitarized zone (DMZ) hosting only
public services that require exposure to Internet. The second case refers
to the traffic coming from temporarily authorized devices. For example, a
legitimate employee outside the enterprise’s premises—working from home
with a personal device—may get a temporal permit to access restricted zones
via VPN. The last category comprises attack traffic which is to be filtered by
the security middleboxes in the frontline of defense.

2.2 Challenges

Secure Zone Transfer Transmitting security-sensitive data between zones
in different physical locations (e.g., data center to branch site) over the pub-
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2. Background

lic Internet poses a challenge. Security level information is lost in transit,
requiring that the data is re-authenticated and filtered again on the receiv-
ing site even though source and destination could be part of the same logical
zone. Today’s overlay protocols are often used to overcome the restriction of
losing security level information in transit. This, however, introduces new
challenges: difficulties in deployment per zone, computational overhead,
and poor management scalability.

Interoperability Even if security-level information persists in transit, net-
works of different branch sites might not be built on the same internal pro-
tocols (e.g., SPB [16] vs Trill [17]) which makes it difficult for end systems
in different zones to be able to seamlessly communicate with each other.
A new architecture therefore must be able to understand various network
protocols and interpret them into a common language that all target net-
works can understand. This means that the interpretation should preserve
the properties of an original protocol, such as virtual layer 2 segmentation.
A flexible design for the architecture to easily adopt new protocols is also of
importance.

Management Scalability In current local network zoning architectures, ad-
ministration is being considered a tedious, time-consuming, and labor-intensive
task. For example, simply adding a new zone might require existing policies
to be thoroughly reviewed, updated, and re-distributed to the local network
entities. The management complexity dramatically increases in a wide-area
network (WAN) environment. For global orchestration across heteroge-
neous environments, a new architecture therefore must ensure management
scalability. That is, network administrators should be able to easily extend
network zones in different physical locations and update policies that re-
flect these network changes, and be assured that no security loopholes were
introduced.
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Chapter 3

Related Work

The majority of literature in network zoning has focused on security en-
forcement architecture using middleboxes such as firewalls, IPS, and IDS.
Conventional security middleboxes define restricted zones and filter un-
wanted traffic at the entry points of protected zones [18]. As information
systems and the corresponding network functions got more complicated,
the notion of distributed security systems has been introduced in the late
1990’s [19]. Early approaches to protect only internal information systems
from external threats have further evolved to mitigate sophisticated threats,
for example insider attacks, rule tampering, application-level proxies, and
denial-of-service attacks [7]. Later, with emerging network virtualization
technologies and cloud computing environments, virtual firewalls and col-
laborative security enforcement kept getting attention from both academia
and the industry [8, 15].

Despite numerous research efforts, network zoning using security middle-
boxes has issues with respect to performance—the iMIX throughput de-
grades by 40 - 75% on commodity products [20]—and misconfigurations [21–
23]. With Mondrian, we address these challenges by leveraging crypto-
graphic policy enforcement and centralized policy orchestration, achieving
scalable, effective, and cost-efficient network zoning.

Network isolation through network segmentation is another essential ele-
ment of network zoning. To logically segment the physical network, net-
work virtualization technologies are heavily used in today’s Internet, in
particular large enterprise networks and cloud computing environments.
VLAN [2] is the most frequently used network segmentation technique. It
logically segments a physical LAN into up to 4094 virtual LANs by tag-
ging the layer 2 header with a unique VLAN identifier (VID). Later, Virtual
eXtensible LAN (VXLAN) [24] has been introduced for better scalability;
it expands the number of virtual LANs to up to 16 million by leveraging
a 24-bit identifier. SPB [16] and Trill [17, 25] are layer 2 routing protocols
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enabling multi-path communication among virtual LANs within the same
physical LAN. Although security is an important property when it comes to
network segmentation, it unfortunately has often not been treated as a major
concern. Systems lack protection for segment membership and access con-
trol. To isolate each segment, use of a large number of security middleboxes
is necessary, thus increasing operational costs and management complexity.

SVLAN [26] is an architecture enhancing security in network isolation by en-
forcing the receiver’s consent towards incoming traffic. SVLAN is the clos-
est work related to Mondrian, but there are three major differences. First,
Mondrian decouples policy establishment and enforcement. In SVLAN,
the authorization delegate (i.e., controller) is responsible for establishing
basic reachability policies and issuing authorization tokens to enforce the
policies. The single trust model requires additional latency to fetch the au-
thorization token for a new flow. In contrast, Mondrian leaves the policy
enforcement to the data-plane, reducing overhead. Second, Mondrian pro-
vides data confidentiality. SVLAN focuses on bridging layer 2 networks
and thus leaves higher-layer protocols responsible for communication secu-
rity. Lastly, Mondrian is compatible with various Internet architectures,
whereas SVLAN is relying on architectures that exhibit segment routing
properties [27–29]. Although segment routing is an emerging technology, it
is not yet completely supported, especially for collaborative wide-area net-
works, and thus constrains deployability.
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Chapter 4

Overview

This chapter provides an overview of Mondrian. We first elaborate the
fundamental goals of this research, along with requirements, and design
choices (§4.1). We then outline Mondrian including a brief introduction of
each component and their workflow (§4.2). Finally, we describe our threat
model (§4.3) and state our assumptions (§4.4).

4.1 Design Principles

Goal The fundamental goal of this work is to build an architecture that
combines local network zoning and inter-domain routing with regard to se-
cure zone transfers, lightweight protocol interoperability, and incremental
deployability—thereby enabling secure, scalable, and flexible network zon-
ing on a global scale. That is, an administration domain expresses zone
definitions and corresponding zone transfer rules, and deploys the policies
to distributed network entities. These policies force the network to only
forward authorized packets protected by cryptographically secured authen-
ticators, ensuring secure and sustainable zone-to-zone communication.

Desired Properties We consider the following properties to achieve this
goal.

• Data confidentiality: through a constructive approach, the zone trans-
fer protocol ensures that no information is exposed while being trans-
mitted via the public Internet.

• Management scalability: logically centralized orchestration empowers
network administrators to easily migrate network topologies, update
policies and mirror abstract network zones into the real network.

• Efficiency: the cryptographic primitives introduce only minor perfor-
mance overhead in terms of latency, bandwidth, and operational costs.
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4. Overview

• Deployability: the Mondrian architecture requires minimal changes
to the existing network infrastructure in order to achieve compatibility.
Furthermore, firewalls and VPN devices at each entry point of every
zone can be replaced with one Mondrian gateway, saving operational
costs for the same level of network security.

Design Choices We design Mondrian working with mature technologies
that are embraced in modern enterprise environments. In particular, the
following design choices are made:

• Network programmability is realized with the concept of a logically
centralized controller (e.g., SDN), preserving management flexibility
and scalability.

• Asymmetric cryptography is used for core operations where source
authenticity is critical (e.g., symmetric key exchange).

• Symmetric cryptography is used for the rest of the data transmission,
ensuring efficient packet processing.

Main Data Center (HQ) Branch Site
Controller

Zone 1

Zone 2

Zone 3

Zone 1

Zone 3

Internet

Transit Zone

TP TP

Figure 4.1: An overview of the Mondrian architecture. The inter-domain transit
zone interconnects physically and logically distributed network zones with unified
security policy enforcement.

4.2 Mondrian Overview

Entities in Mondrian Figure 4.1 illustrates an overview of Mondrian. Dif-
ferent branch sites of an enterprise are interconnected over a WAN (e.g., the
Internet). Each site contains multiple, logically separated zones connected
to the single zone Translation Point (TP) at the corresponding site. The TP
is a designated gateway for zone transfers, operating on layer 3 and inter-
connecting all zones at a given site of the enterprise network. All the traffic
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4.2. Mondrian Overview

towards either internal network or WAN, therefore, passes through the TP.
Note that TPs are the endpoints of our architecture, meaning that every-
thing beyond that point should not be modified for ease of deployment and
to ensure compatibility with the modern enterprise environments.

The main task of TPs

Tt

Receive	Packet

Yes

Zones	match?

Yes

Destination	is
on-site?

Forward	Packet	to
internal	Network

Yes NoZone	Transfer
Allowed?determine

destination	site

Check	Zone
Transfer

No

Create
Authentication

Token

No

Internal

Received
from	Internal	or

WAN?

determine	src/dst
zones

Verify
Authentication

Token

WAN

Drop	Packet
Yes NoToken	is	valid?

Transfer	Module

Core	Module

Authentication
Module

Determine	Src/Dst
Zones

Determine
destination	Site

Attach	Token	and
forward	Packet	to

WAN

Figure 4.2: Control flow of the zone Translation Point.

is twofold: first, they
ensure that traffic ad-
heres to a set of al-
lowed zone transitions.
For a packet originat-
ing in a zone and des-
tined for another zone,
the transition must be
explicitly allowed by
a policy. Second, TPs
enable communication
across the WAN with-
out losing previously
established security in-
formation. To this end,
TPs embed an authen-
tication token with cryp-
tographically secured
zone information into
packets before they leave
the internal network.
Furthermore, TPs act
as endpoints hiding sen-
sitive information, such
as internal addresses
and the respective zone
binding, from exter-
nal entities. We also
note that, for a case where zones with the same security requirements and
functionality are distributed over multiple branch sites (e.g., Zone 1 and 3 in
Figure 4.1), we consider them as the same logical zone (e.g., the same zone
identifier). We call this concept zone extension which is not subject to zone
authorization.

A logically centralized controller orchestrates the TPs. The controller is
owned by a single administration domain, and thus the owner of the con-
troller owns all the zones behind the TPs. The controller provides its owner a
management interface in which the owner designs an outline of zone struc-
ture and transfer policies. The explicit network configuration is then dis-
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4. Overview

tributed to the TPs via a secure control channel to enforce the configuration
at the individual premises.

Communication Flow Mondrian enables secure zone transfers over WAN
as follows:

1. Network administrators first establish an IP-zone map and their trans-
fer policies, which represents a virtual network configuration that ex-
plicitly specifies reachability, and upload them to the logically central-
ized controller.

2. Each pair of TPs exchanges symmetric keys to establish a secure tun-
nel. The key is being updated frequently through a state-of-the-art key
management and distribution system that protects the secrecy of the
zone transfer from being exposed to the public while ensuring high-
speed data transmission.

3. The on-site TP inspects all the packets to be transmitted to another
zone. The TP acquires the corresponding zone transfer policy from
the controller and verifies if the transmission is authorized.

4. If a packet is authorized, the TP looks up the respective end-point
TP, encrypts the packet along with the corresponding zone transfer
information, and forwards it across the WAN. Otherwise, the packet
is dropped.

5. The remote-site TP then decrypts the packet and forwards it according
to the enclosed zone transfer information. The receiving TP could also
verify the validity of the packet transmission if desired.

Figure 4.2 shows the control flow of a TP.

4.3 Threat Model

We consider a threat model in which attackers reside either on-premise (i.e.,
compromised end hosts) or are located outside of the cooperative networks.
The goal of attackers is to access unauthorized zones to exfiltrate informa-
tion assets, or disrupt networks and services. To achieve this goal, attackers
can use the following strategies:

Unauthorized Access Attackers may disguise as authorized entities to blind
the security middleboxes and access restricted zones. A more sophisticated
attack is to override security systems by directly injecting tampered policies.

Denial-of-Service Here, the goal is to disrupt the target networks or ser-
vices. Attackers can sabotage the core network systems, for example, by

14



4.4. Assumptions

flooding security middleboxes that perform deep packet inspection. This
might then lead to network performance degradation, causing denial-of-
service for legitimate clients.

4.4 Assumptions

Public Key Infrastructure A given enterprise network has a public key
infrastructure (PKI). That is, the enterprise creates a trust model for its net-
work infrastructure, acts as a trusted certificate authority (CA), and issues
certificates for the core systems. Entities can retrieve and verify the public
keys of the core systems. There are open source projects, such as EJBCA1

and OpenXPKI2, available for setting up enterprise-grade PKIs.

Secure Cryptography Cryptographic primitives we use in Mondrian are
secure; authenticity, integrity, and confidentiality remain intact unless the
cryptographic keys are exposed.

Time Synchronization Core entities within the cooperative network have
loosely synchronized system clocks with a precision of seconds (e.g., net-
work time protocol achieves a precision of tens of milliseconds). Time syn-
chronization is mainly used to constrain the validity of cryptographic keys.

Sole Administration A network has a sole administration domain (e.g.,
enterprise) which has full control over the network architecture and security
policy. To access the network, collaborators must obey this policy.

1https://svn.cesecore.eu/svn/ejbca/trunk/ejbca/
2https://github.com/openxpki/openxpki/
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Chapter 5

Architecture

In this chapter, we present the Mondrian architecture and the underlying
protocols in detail. Later, we describe our key-establishment system that
enables rapid key derivation and distribution in large networks.

5.1 Mondrian Bootstrapping

The bootstrapping procedure is performed when a new zone or a new re-
mote site (a group of zones along with a TP) joins the network.

Zoning Policy A network zone is a logical concept, a group of network seg-
ments. A widely adopted segmentation technology is Virtual Lan (VLAN)
which is used to separate networks on layer 2. For example, zones are made
up of multiple disjoint layer 2 networks all identified by their corresponding
VLAN ID (VID). A VID can be reused as long as networks using the same
VID are kept separate.

In Mondrian, IP subnets correspond to exactly one network zone, such that
the zone a host belongs to can be identified by the host IP address. The same
private address spaces can be a part of different zones, and they are distin-
guishable by a combination of their ASN (autonomous system number) and
IP subnet. Consequently, each zone is defined as:

ASN × IPsubnet 7→ VID, (5.1a)
TP×VID 7→ zoneID. (5.1b)

The way zones are described here corresponds to how enterprises typically
segment their networks today, upholding backward compatibility and con-
sequently deployability. Furthermore, Mondrian does not depend on the
specific layer 2 protocols used at each site.
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5. Architecture

Every zone is under one ownership, e.g., a company. In case multiple com-
panies want to collaborate by sharing certain network zones, it is one com-
pany that creates and owns the zones and the other companies simply join
the network.

Zone Transfer Policy To allow network operators to explicitly express their
zone transfer policies, we consider both denylist and allowlist-based pol-
icy establishment. This is a mature approach commonly used in modern
network management systems, enabling flexible and agile orchestration of
complex networking policies. The following depicts the zone transfer policy
format:

< zonedst, zonesrc > ⇒ < action, priority, time > (5.2)

action determines the corresponding action for the given source and destina-
tion zone pair, e.g., forwarding, drop, and established. Similar to iptables
rules, forwarding would allow any incoming packets from the source zone
whereas drop discards all traffic. established allows incoming traffic for
all established connections.

In an event of conflict where zonesrc has different access authorizations for
the zonedst, the conflict can be resolved by the priority field. That is, the
policy with a highest priority would be enforced. If conflicting policies have
the same priority, the most recently established policy according to time
would be enforced.

Translation Point Initialization A TP is initialized when a new remote
site opens, prior to any communication between zones. The initialization
process has mainly two goals: i) bootstrapping a secure channel with its
controller to exchange control-plane messages, and ii) establishing secure
tunnels with other TPs for data transmission.

Upon bootstrap, a TP performs a client-authenticated TLS handshake with its
controller in order to exchange their certificate, and agree on a cipher suite
and compression method. The TP finds the corresponding address in its
configuration file. This means that, prior to first use, there needs to be an
out-of-band setup where the TP is configured. This can either be done by
the owner of the controller shipping a pre-configured machine to the new
remote location or by the remote location setting up a machine and granting
the controller owner management access to the given machine. Bootstrap-
ping TPs with multiple controllers will be described in §9.3 with practical
considerations such as controller discovery, TP migration, and policy con-
sistency.

The controller synchronizes with TPs to keep their list of other TPs in the
network up-to-date. To this end, the controller frequently pushes a list of
potential peers to TPs. This can be done either regularly (e.g., on a daily
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basis) or occasionally (e.g., when a new TP joins the network). TPs then
establish a secure channel with new TPs. To prevent TPs from using a stale
TP list, the shared TP list is associated with a time to live (TTL) value.

For “trust-even-before-first-use”, the TPs and controller must be able to ver-
ify each other, preventing: i) a legitimate controller pushing information
to an unauthorized TP, and ii) a legitimate TP connecting to a bogus con-
troller or TP under an attacker’s control. We ensure source authenticity
of the Mondrian entities by leveraging PKI-based identities. The main
idea behind the source authenticity is that all the TPs and controllers ob-
tain digital certificates for their IP address from a public key infrastructure
(PKI). The owner of the entities (e.g., an enterprise) is a certificate authority,
and issues the certificates before an entity bootstraps. To this end, we con-
sider well-established practices, e.g., the Resource Public Key Infrastructure
(RPKI) [30, 31].

5.2 Protocol Description

Now, we describe how two end hosts within different remote sites are able
to communicate. Figure 5.1 illustrates a protocol level design including au-
thorization, forwarding, and verification. A detailed header design follows.

Zone Transfer Authorization End hosts behind a TP operate as they nor-
mally would when they reside in a local network connected to a commod-
ity gateway. That is, without any acknowledgment on network changes, a
sender HS sends a packet to the receiver HR. If HS and HR are residents of
the same subnet (namely the same zone), the packet will be directly steered
to the destination by the local forwarding devices. If HR is in a different
subnet (or a remote site) however, the packet is first delivered to TPS since
TPS is the gateway of HS.

To determine if the packet is allowed to be forwarded to the given destina-
tion zone B, TPS needs an explicit zone-transfer policy for the given source
and destination pair. Ideally, the policy is cached in the TPS’s zone transfer
table. In case the cache misses, TPS acquires the policy from the controller
C as follows:

1. TPS requests a zone-transfer policy from C:

TPS → C : HR | HS (5.3)

2. C replies with the zone-transfer policy:

C → TPS : ZR | ZS | rule | TPR | ExpTime (5.4)
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Figure 5.1: Protocol details for data forwarding. The controller frequently updates
TPs with the latest zone transfer policies.

The controller consults the zone-transfer policy to see if the packet is allowed
to be forwarded to HR, more specifically to destination zone ZB. To this
end, the controller first checks the corresponding zone information (Equa-
tion 5.1), and matches it with the zone transfer rules (Equation 5.2). The
authorization result is then delivered to the requesting TP along with the
corresponding source and destination zone identifiers (ZR and ZS respec-
tively), the destination TP address (TPR), and the expiration time (ExpTime)
for the policy. ExpTime can be an arbitrary number, but we consider it to be
a small number used for policy freshness.

Data Forwarding The TP discards the packet (Host Unreachable) if rule =
drop. Otherwise, the TP looks up its routing table and transmits the packet.
There exist two types of zone transfer cases: one for local (same-site) zone
transfers and another for remote zone transfers as addressed in §2.1. For the
local zone transfer, the TP simply rewrites the Ethernet header by following
the local layer 2 protocol, and forwards it through a corresponding interface.
Since the local network is assumed to be trustworthy, no additional packet
processing is necessary apart from the authorization.

For the remote zone transfer, the TP is responsible for the secure transmis-
sion of the packet towards the destination TP. Recall that it is important for
the inter-domain zone transfer packet to keep confidentiality and integrity
in transmission. We therefore leverage the notion of secure tunneling, i.e.,
the IPSec tunnel mode [12, 32], meaning that the original packet is wrapped,
encrypted, authenticated, and attached to a new IP header. The new packet
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layout is formed as follows:

EIP = {HR | HS | payload}K, (5.5a)
AT = MACK(ZR | EIP), (5.5b)

TPS → TPR : TPR | TPS | ZR | AT | EIP. (5.5c)

The Encrypted original IP payload (EIP) is the original packet including IP
header and payload. It is encrypted with a secret key K pre-shared between
TPS and TPR. By encrypting the original packet and encapsulating it into
the new IP datagram, we ensure confidentiality on the original payload as
well as the host identities. We also introduce an Authentication Token (AT)
which is placed in front of the EIP and contains a message authentication
code (MAC) covering EIP and the destination zone identifiers. AT provides
integrity over the entire packet except the outer IP header field which could
be modified in transit.

The main difference to the Encapsulating Security Payload (ESP) on IPSec
tunnel mode is that, rather than having site-to-site symmetric keys, we
use site-zone pairwise keys. That is, the keys used for every triplet of
{TPsrc | TPdst | zoneIDdst} differs, providing a variety of unique symmetric
keys even for the same pair of TPs. In addition, by conveying only zoneIDdst
in the header, zone pair information, which could lead to the potential dis-
closure of the zone structure and their transfer rules, is not exposed.

Verification The destination TP performs two steps of verification upon
packet arrival: authentication and authorization. By extracting the quartet
information from the header, TPR first derives the corresponding symmetric
key and recalculates AT to see whether the MAC matches the original AT
value. This step is used to verify packet integrity as well as authenticity
since only the two parties can derive the same symmetric key. If the match
fails, it means that either the packet integrity is compromised or source
authentication failed. Therefore, the packet is discarded.

To further verify authorization, TPR obtains HS and HR by decrypting EIP,
and verifies if HS is authorized for the zone transfer towards HR. Similar to
TPS, TPR might send a request to its controller to acquire the authorization
policy when the policy is missing in its database (Equations 5.3 and 5.4).

In principle, Mondrian is constructed under a single administrative do-
main such that all the core entities, i.e., TPs and controllers, are trustworthy.
One of the main advantages of this trust model is that the authorization
check performed by the sender side TP is also trusted. The receiver-side TP
therefore does not necessarily verify the zone transfer authorization. Upon
receiving a packet, TPdst checks the authenticity of the packet, decrypts EIP,
and forwards the original IP packet to the destination host. This trust model
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could simplify the entire verification process significantly by omitting the
authorization step which requires an additional challenge-response protocol
to the controller, improving practicality for TPs running at small branches
limited in operational resources.

5.3 Key Management

In order for TPs to create and verify authenticators based on symmetric
cryptography we need a scheme to distribute keys amongst them. Ideally,
the keys used for every triplet of {TPsrc | TPdst | zoneIDdst} should be dif-
ferent. Additionally, ease of key management is a major concern as key
distribution mechanisms in today’s Internet, such as IPsec [33–35], are com-
plicated and introduce management overhead. To alleviate these problems
we propose a key management system based on a state-of-art key manage-
ment system called DRKey [36].

Major modifications to DRKey introduced for Mondrian key management
stem from the following requirements: first, in the context of network zon-
ing, we require a high degree of confidentiality on top of authenticity to pro-
tect sensitive information. DRKey mainly targets authenticity for network
entities, not confidentiality. Second, Mondrian does not trust ASes hosting
zones for enterprises. DRKey’s key establishment relies on the asymmetric
key pair issued by each AS, that might cause a man-in-the-middle (MITM)
vulnerability. Furthermore, it is unlikely that an AS wants to have a ded-
icated key-establishment service for each enterprise, which would require
additional management overheads and deployments amongst ASes. Third,
Mondrian requires key management at zone granularity, while DRKey is
intended to support key exchanges at a higher granularity (e.g., per host or
application). Thus, there is a design headroom which could simplify the
architecture, reducing functional complexity and enhancing management
scalability.

Driven by this, we redesign the DRKey’s key-derivation architecture remov-
ing the AS dependency (i.e., the AS keys and the dedicated key servers at
each AS), meaning that an enterprise has full control over distributed net-
work zones and does not need to trust other ASes for inter-zone networking.
Additionally, we simplify the key design to work at zone granularity, sup-
porting faster key-derivation while providing the same level of security.

Key Hierarchy DRKey introduces a key hierarchy that allows services to
dynamically derive symmetric keys in a fast and easy manner. We adapt the
concept to support key derivation in the context of network zoning. The key
hierarchy is as follows:

• 0th-level key: STP is the secret value generated by each TP individually.
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• 1st-level key: a TP derives different symmetric keys for other TPs from
the local secret value STP. The derived symmetric keys are called first-
level keys and are calculated as

KA→B = PRFSTPB
(A), (5.6)

where A and B stand for the sending and receiving TP addresses and
PRF is a secure pseudo-random function. Since only the receiver B
can derive this key, it is necessary for the other party, in this case A,
to fetch the shared symmetric key by contacting B. We note that, in
contrast to DRKey, the arrow direction in the notation indicates the
communication direction for which the key is used.

• 2nd-level key: from the first-level keys, second-level keys are derived
to provide diverse symmetric keys for each zone within the same
source and destination TP pairs. The second-level keys are calculated
as

KA→B:Z = PRFKA→B(Z). (5.7)

Z is the zone ID of the target zone where the destination host resides.

This hierarchical key structure benefits us in multiple ways: first, it delivers
key diversity. Since a second-level key is bound to a specific destination
zone, it enables zones to have different keys even for the same pair of source
and destination TPs. Second, it is easy for TPs to efficiently derive the sym-
metric keys as all the required inputs (i.e., local and remote TP address,
and destination zone) are contained in the packet header. In particular, a
remote TP thus can derive the key directly from the packet header without
a memory lookup. Finally, since all second-level keys are derived directly
from first-level keys, the system scales linearly with the number of TPs, not
the number of zones, achieving scalability.

Bootstrapping Keys Each TP randomly generates a local secret value STP,
the root of the TP-specific key hierarchy. Since the first and second-level keys
are derived from the secret value recursively, they inherit the randomness
and secrecy of STP. Driven by this, we consider a non-deterministic random
number generator. The randomly generated secret value never leaves TP
premises and is frequently renewed, e.g., on a daily basis, to achieve perfect
forward secrecy [37].

Key Establishment Key establishment precedes first data transmission. To
establish a first-level key, the source TP initializes the key exchange protocol
by sending a key exchange request:

req = A | B | ValTime, (5.8a)
TPA → TPB : {req}K−A

, (5.8b)
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where ValTime represents the validity period of the request. The request is
signed with the requesting TP’s private key K−A , meaning that the receiving
TP can verify the authenticity of the request packet. Recall that, for authen-
ticity of Mondrian entities, each TP certifies its own public/private key pair
with a certificate issued by the trusted CA, e.g., the owner of the network
zones.

Upon receiving the key exchange request, TPB verifies the source authentic-
ity and checks the validity of ValTime. If the request is valid TPB derives
a first-level key from the local secret value STPB and replies back to the re-
quester. The reply packet is formed as follows:

KA→B = PRFSTPB
(A), (5.9a)

rep = {B | KA→B | ExpTime}K+
A

, (5.9b)

TPB → TPA : {rep}K−B
, (5.9c)

where ExpTime denotes the expiration time of the first-level key, K+
A is TPA’s

public key used for encryption, and K−B is TPB’s private key to sign the reply
packet. Finally, the requesting TP verifies the validity of the reply packet and
caches KA→B until it expires. Note that the key exchange protocol could be
replaced with well-established key exchange protocols, such as IKE [38].

Ideally, a TP prefetches all the first-level keys for other TPs it wishes to
communicate with. The TP acquires the list of active TPs from its controller
and initiates the key exchange protocol for these TPs in advance. This is
feasible because the number of TPs for an enterprise is surely limited; for
example, the total number of branches that the Bank of America has in 2019
is approximately 4.6k [39]. Each branch would need just one TP, which
means that a TP needs to prefetch 4.6k first-level keys. Nonetheless, on-
demand key fetching is also possible. In particular, when the current first-
level key expires in the middle of on-going data transmission or a new TP
joins, a key exchange can be initiated.

TPs are also responsible for second-level key establishment. However, this
does not require any key exchange protocol. Upon data transmission, source
and destination TPs are able to dynamically derive the same second-level
key for the destined zone from the shared first-level key as shown in Equa-
tion 5.7.
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Chapter 6

Implementation

We now describe the implementation details of each component in Mon-
drian. We implemented a prototype that comprises a software-based gate-
way and controller. The main development language is golang 1.14.11, and
we used SQLite32 for the database. To secure control-plane channels, we
also leveraged TLS 1.33. The prototype is publicly available4.

Our implementation builds on top of the SCION architecture [29]. The im-
plementation decision has been driven by the following reasons: i) SCION
provides network programmability along with the separation of control and
data plane, ii) SCION comes with an embedded PKI system that can be uti-
lized for our key management system, and iii) the open source version of the
DRKey5 system as well as a software-based gateway working with SCION
are available, thus enabling rapid prototyping.

6.1 Translation Point

To implement a prototype of TP, we extend the SCION-IP Gateway (SIG)6.
The main functionality of SIG is to encapsulate legacy IP packets into SCION
packets and vice versa. In this context, a SIG acts as a gateway between an
internal (legacy) network and an external (SCION) network. Since TP is
designed as a gateway that bridges LAN traffic over WAN—the underlying
inter-domain routing protocol is not relevant here—the functional aspects
of TP meets with what SIG provides. To be integrated with SIG, TP medi-

1https://golang.org/doc/go1.14
2https://www.sqlite.org/releaselog/3_32_0.html
3https://tools.ietf.org/html/rfc8446
4https://github.com/chaehni/scion/tree/zoning
5https://github.com/netsec-ethz/scion/tree/scionlab_previousversion/go/lib/

drkey
6https://github.com/scionproto/scion
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ates between the UNIX socket and SIG socket, and performs zone transfer
authorization and verification for all incoming/outgoing packets.

6.1.1 Modular Design

Packet Format In order to make TPs modular, all modules must agree on
a common packet format on which they operate. The packet contains the
raw IP packet read from the interface, as well as metadata that is required
by the modules to perform their task. Modules can read and write all fields
of the packet. In particular they can modify the raw IP packet. Listing 6.1
shows the packet format.

Listing 6.1: The abstract packet format passed between the modules of a TP.
1 // Packet conta ins a raw IP packet with a d d i t i o n a l meta data
2 type Packet s t r u c t {
3 In gr ess bool
4 SrcHost net . IP
5 DstHost net . IP
6 RemoteTP s t r i n g
7 DstZone uint32
8 RawPacket common . RawBytes
9 }

The Ingress field identifies a packet as either an ingress packet, coming
from the WAN, or an egress packet that originated in the local network.
SrcHost and DstHost reflect the source and destination IP addresses of

the packet. RemoteTP designates the remote TP. For an ingress packet that
is the source TP from which the packet was received, for an egress packet
it is the TP to which the packet needs to be forwarded to. DstZone is the
Zone ID of the zone to which DstHost belongs.

Module Interface A module is then simply defined as a type that handles
this packet format. More precisely, a module implements a very simple
Module interface.

Listing 6.2: The interface all modules must implement.
1 // Module i s a s i n g l e element in the p i p e l i n e
2 // t h a t handles IP packets .
3 // Modules must be thread s a f e .
4 type Module i n t e r f a c e {
5 Handle ( Packet ) ( Packet , e r r o r )
6 }

As can be seen in Listing 6.2, modules call Handle to process packets of the
aforementioned format and then return a new, potentially modified, packet
and an error. The error is nil if the handling of the packet was successful.
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Handler Chains Modules can be linked in a specific order to create a chain
of handlers. These handler chains can then be registered for a specific use
case. In particular, it is possible to create different handler chains for intra-
domain and inter-domain zone transfers.

6.1.2 Implemented Modules

Figure 6.1: An overview of the modularized TP implementation. Major use cases
are indicated with colored arrows.

In this section we describe the main modules that have been implemented
to satisfy the protocol described in §5.2. Figure 6.1 illustrates the implemen-
tation details of the modularized TP design that consists of the three main
modules: i) core module, ii) transfer module, and iii) authentication module.

Core Module The core module is the main loop of TP. It reads packets
from the UNIX socket and redistributes them to the corresponding inter-
faces. More precisely, when receiving packets from the internal network,
it retrieves metadata such as source and destination IP addresses (as illus-
trated in §6.1.1) from the raw packet and hands over to the transfer module.
If the zone transfer is authorized (return = 1), the packet is then either
forwarded back to the internal network or, in case the given destination is
in a remote zone, once again handed over to the authentication module to
be prepared for secure transmission. For packets coming from the exter-
nal network, a TP first calls the authentication module for verification of
the conveyed authentication token. Packets with invalid tokens are simply
discarded.

Transfer Module The main objective of this module is to check the zone
transfer rules. The transfer module communicates with its controller to
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maintain a list of up-to-date zone transfer policies. To this end, it establishes
a TLS channel with the controller, downloads policies, and populates the
database. We implemented the transfer module to support different drop-in
options using APIs.

• No-Op: This is for a setup in which no inter-domain zone transfers are
required, but only inter-domain zone extensions.

• Standard: This mode would perform an authorization check for the
requested zone transfer based on the source and destination IP ad-
dresses.

• Firewall: If needed, the module could be instantiated as a full-fledged
firewall. This mode would be useful for cases where the firewall can
not be replaced.

While the No-Op and Firewall options are both trivial to implement (the
first simply accepts all packets while the latter forwards packets to the fire-
wall instance), it is crucial for the Standard option to efficiently match IP
addresses against a list of trusted IP subnets. In our implementation we
leverage a compressed trie data structure (also radix trie or compact pre-
fix tree) to check if a given pair of source and destination IP addresses are
allowed to exchange data. Specifically, we use the open source cidranger7

library. Since the lookup time of the trie is only dependant on the depth of
the trie, which is fixed (32 bits for IPv4 and 128 bits for IPv6), the lookup
time is constant with respect to the number of stored subnets. This ensures
fast packet processing even if a TP has a large number of rules configured.
Figure 6.2 shows a simplified example of how a trie stores IP subnets.

0 1

bit 31

10 1

0

bit 30

bit 29

bit 280

160.0.0.0/4

1

128.0.0.0/3

224.0.0.0/4

Node storing a subnet

Node not storing a subnet

Figure 6.2: The first few levels of a trie storing the subnets 128.0.0.0/3, 160.0.0.0/4,
and 224.0.0.0/4.

7https://github.com/yl2chen/cidranger
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While the trie stores all configured IP subnets known to the TP, another data
structure is required to store the actual zone transfer rules, stating which
zones, and by extension which subnets, are allowed to communicate with
each other—recall that a subnet corresponds to exactly one zone. For this,
we use a fast in-memory key-value store which maps to a given zone all
other zones from which it accepts traffic.

Authentication Module For inter-domain packet transmissions, the au-
thentication module issues authentication tokens (further discussed in §6.3)
for outgoing packets. It (ideally) caches the first-level keys prefetched from
other TPs and derives a second-level key to generate the authentication to-
ken. Inversely, for packets incoming from other TPs, it derives the corre-
sponding 2nd-level key and verifies the attached authentication token. The
authentication module is in itself modular by relying on an interface to fetch
and derive keys. The key management logic, which is responsible for ex-
changing, caching, and evicting expired keys, is completely decoupled from
the rest of the module. This has the advantage that the key exchange proto-
col can be changed independently, without a need to modify other parts of
the module. The interface that all implementations of such a key manager
must satisfy is depicted in Listing 6.3.

Listing 6.3: The KeyManager interface used by the authentication module to fetch
and derive keys.

1 // KeyManager i s a thread−s a f e key s t o r e managing L0 and L1 keys
2 type KeyManager i n t e r f a c e {
3 // FetchL1Key f e t c h e s the l e v e l 1 key to be used to send
4 // data to remote . I t re turns the key and a bool
5 // i n d i c a t i n g i f the cached key was expired and a f r e s h
6 // key has been fe tched from remote .
7 FetchL1Key ( remote s t r i n g ) ( [ ] byte , bool , e r r o r )
8 // FetchL2Key f e t c h e s the Level−2 key used to encrypt
9 // outgoing t r a f f i c

10 FetchL2Key ( remote s t r i n g , zone uint32 ) ( [ ] byte , bool , e r r o r )
11 // Derive L1Key der ives the l e v e l 1 key used to der ive
12 // the L2 key .
13 DeriveL1Key ( remote s t r i n g ) ( [ ] byte , e r r o r )
14 // Derive L2Key der ives the l e v e l 2 key used to v e r i f y
15 // incoming t r a f f i c .
16 DeriveL2Key ( remote s t r i n g , zone uint32 ) ( [ ] byte , e r r o r )
17 }

6.2 Controller

We implemented the controller as a Web server written in golang with an
SQLite database storing the zone information and transfer policies. The
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controller offers an API which allows TPs to fetch zoning information via
HTTPS GET requests.

APIs The endpoints of interest are:

1. /api/get-subnets

2. /api/get-transfers

Using these endpoints TPs fetch IP subnet and zone transfer rules. Impor-
tant to note is that the controller only hands out the subset of the full set
of rules which is required for the requesting TP to be operational. This
minimizes the size of data transmissions and also improves security by not
disclosing the full network view to every TP. For every call to the API the
controller first verifies the authenticity of the caller before the request is for-
warded to the corresponding handler. The handlers then load the requested
data from the database and send it to the caller as JSON-formatted bytes.

Listing 6.4: Abstraction layer function that inserts zone transfer rules into the
database.

1 // I n s e r t T r a n s f e r s i n s e r t s premitted zone t r a n s f e r s i n t o the backend
2 func ( b ∗Backend ) I n s e r t T r a n s f e r s ( t r a n s f e r s types . Tr an s f er s ) e r r o r {
3 stmt := ‘ INSERT INTO T ra ns fe rs ( src , dest ) VALUES ( ? , ? ) ‘
4
5 // do i n s e r t i o n in a t r a n s a c t i o n to ensure a tomic i ty
6 tx , e r r := b . db . BeginTx ( contex t . Background ( ) , n i l )
7 i f e r r != n i l {
8 return e r r
9 }

10
11 f o r src , des t s := range t r a n s f e r s {
12 f o r , dest := range des ts {
13 , e r r = tx . Exec ( stmt , src , dest )
14 i f e r r != n i l {
15 tx . Rollback ( )
16 return e r r
17 }
18 }
19 }
20 tx . Commit ( )
21 return n i l
22 }

Database The database consists of four tables (Zones, Sites, Subnets, Trans-
fers), each describing one of the core elements of the architecture. The
database schema is listed in Appendix A. An abstraction layer written in
golang allows the controller to interface with the database using high-level
calls. The abstraction layer makes use of transactional queries to ensure
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consistency even in the event of errors. Furthermore, the abstraction uses
prepared statements for insertions, deletions and retrievals of data. This
protects against SQL-injections and improves the speed of queries. An ex-
ample function of the abstraction layer is depicted in Listing 6.4.

6.3 Authentication Token

0 8 32

Type (Reserved) ZoneID

TimeStamp

Nonce

MAC

L2 header        L3 header (SCION)              AT                                          EIP

Encryption scope

Authentication scope

Figure 6.3: Mondrian packet format for secure tunneling.

The Mondrian packet format follows the IP tunneling conventions of en-
capsulating the original packet with a new outer IP header that indicates
the two tunnel endpoints as the new source and destination. The origi-
nal packet is encrypted and then authenticated along with the new packet
header fields. Figure 6.3 shows the detailed packet structure and coverages
of the confidentiality and integrity guarantee.

The authentication token starts with one byte of reserved space for a Type
field. While currently unused this will be useful in the future for distin-
guishing different variations of the authentication token. ZoneID depicts the
3 byte long zone identifier of the destination zone. It is used by the receiving
TP to derive the correct key for MAC verification and decryption. The next
4 bytes are occupied by a TimeStamp which is added by the sending TP. It is
the Unix time at the point of sending the packet. The receiving TP uses this
timestamp to reject replayed packets. The timestamp is followed by a Nonce
of 12 bytes.

The nonce as well as the previous three token fields and the data to be
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encrypted (EIP) serve as input to a Galois/Counter Mode (GCM) algorithm
with an underlying AES-128 block cipher as cryptographic primitive. This
mode of operation is widely adopted for its performance as well as the
capability to do authenticated encryption with associated data (AEAD). Here it
provides authenticity over the header fields (Type, ZoneID, TimeStamp) and
the data in EIP while EIP additionally also gets encrypted.

The 16 byte MAC generated by GCM is the last field in the authentication to-
ken. Both, the nonce and the MAC sizes follow the guidelines recommended
by NIST SP 800-38D [40].

Listing 6.5 shows the interface that is used by the authentication module
to create and attach an authentication token to an IP packet. Of particular
interest are the functions ToIR and FromIR . ToIR takes the raw packet ,
a key and some metadata ( remote , dstZone ) and returns the encrpyted
packet with attached tag and an error. The error is nil if the call was suc-
cessful. Inversely, FromIR receives an encrypted packet with attached token
( cipher ) and a key and then returns the decrypted packet together with
the token ( additionalData ) and an error. The error is again nil if the call
to the function was successful.

Listing 6.5: The Transformer interface used by the authentication module to create
and verify authentication tokens.

1 // Transformer transforms IP packets to and from intermedia te
2 // r e p r e s e n t a t i o n
3 type Transformer i n t e r f a c e {
4 // ToIR transforms packet to intermedia te
5 // r e p r e s e n t a t i o n .
6 ToIR ( remote s t r i n g , key , packet [ ] byte , dstZone uint32 )
7 ( [ ] byte , e r r o r )
8 // FromIR transforms cipher from intermedia te r e p r e s e n t a t i o n
9 // back to a regular IP packet

10 FromIR ( key , c ipher [ ] byte )
11 ( addi t ionalData [ ] byte , packet [ ] byte , e r r e r r o r )
12 // R e s e t S t a t e r e s e t s the nonce s t a t e f o r remote
13 R e s e t S t a t e ( remote s t r i n g ) e r r o r
14 // GetZone r e t r i e v e s the zoneID encoded in token
15 GetZone ( token [ ] byte ) ( uint32 , e r r o r )
16 }

If the token format needs to be changed, only the implementation of the
Transformer interface needs to be modified. The rest of the module can

remain unchanged.
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Chapter 7

Evaluation

7.1 System Benchmarks

We first conduct microbenchmark tests to evaluate the performance of TP
including the key derivation, packet authentication, and authorization. For
scrutinize and reproducible evaluation, we leverage the standard benchmark
library testing officially supported by golang. The benchmarks are con-
ducted on commodity machines equipped with an Intel i7 2.9 GHz CPU,
16 GB memory, and a 1 GbE NIC.

Authorization From a technical perspective, the zone transfer authoriza-
tion consists of two tree searches followed by a database lookup. Upon
receiving the packet metadata from the core module, the transfer module
first looks up the corresponding zone identifiers for the source and desti-
nation addresses, and then compares them to the zone transfer policies. In
our prototype, these lookups are performed sequentially. The authorization
performance is therefore dependent on the lookup time of the trees and the
policy database.

Table 7.1 shows the benchmark results of database lookups for different
numbers of policies. Note that each benchmark ran a couple million itera-
tions and reports the mean value. The authorization check takes approxi-
mately 300 to 450 ns per packet, which is a notable result considering: i) a
single lookup consists of two tree searches and a database lookup, ii) the
result is from a high-level language implementation, and iii) the test set
scales 1000 times. There might be an authorization abort due to a lookup
failure that is caused by one of the following three reasons: i) no matching
source zone ID, ii) no matching destination zone ID, or iii) no matching zone
transfer policy. As expected, a lookup failure is commonly 3 to 75% faster
than a successful lookup, depending on when a lookup failure occurs. This
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Table 7.1: Benchmark results for the
transfer policy lookup (ns).

# of
Poli-
cies

No
Miss

Src
IP
Miss

Dest
IP
Miss

Policy
Miss

100 312 100 235 313
1 K 399 105 264 394
10 K 381 99 262 386
100 K 448 101 290 435

Table 7.2: Sender-side L1 key lookup
and L2 key derivation times for differ-
ent network sizes (ns).

# of
Branches

1st-level
Key

2nd-level
Key

100 154 88
1 K 155 97
10 K 161 175
100 K 157 111

Table 7.3: Receiver-side L1/L2 key
derivation times for different network
sizes (ns).

# of
Branches

1st-level
Key

2nd-level
Key

100 188 104
1 K 188 104
10 K 197 103
100 K 188 104

Table 7.4: Processing times for the en-
cryption/decryption for different packet
sizes (ns).

Packet
Size
(byte)

Encryption Decryption

100 856 659
500 1082 747
1000 1338 850
1500 1557 950

implies that abnormal packets with invalid zone transfer requests can be
quickly discarded.

Key Derivation We investigate the key derivation performance. Recall that
the key derivation proceeds differently for sender and receiver. A receiver is
capable of directly deriving the second-level key from the local secret (Eq. 5.6
& Eq. 5.7), whereas a sender needs to fetch the first-level key from the key
cache before it can derive the second-level key. From a scalability perspec-
tive, we vary the number of branches (a TP for each) by increasing the num-
ber of stored first-level keys up to 100 K. Table 7.2 depicts the average time
for sender-side key derivation measured by a benchmark running more than
a million iterations. Table 7.3 shows the same results for receiver-side key
derivation. As can be seen, looking up the first-level key from cache is
slightly faster than deriving the first-level key from the local secret (∼155 ns
vs. ∼190 ns). This is expected when using a high-level language like golang.
Much faster key derivations are possible when using a state-of-the-art im-
plementation [36]. On the other hand, the second-level key derivation takes
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roughly the same amount of time for sender- and receiver-side. This is to
be expected as this derivation step is identical in both cases. In addition,
the size of the key table has no influence on the second-level key derivation
since second-level keys are directly derived from first-level keys. The results
indicate that the total processing time for the full chain of key derivations
takes less than 0.5 µs even in very large networks with 100 K branch sites,
which is negligible considering network latency in today’s Internet.

Authentication The additional processing time for packet encryption and
decryption is shown in Table 7.4. In summary, it requires approximately 1.5
to 2 µs to authenticate various sizes of packets. We note that the process-
ing overhead occurs for the majority of tunneling technologies that provide
confidentiality for data transmission. The processing time can be minimized
with implementations using the Data Plane Development Kit (DPDK) [41]
or by leveraging hardware dedicated to cryptographic operations.

7.2 Network Benchmarks

So far, we evaluated the performance of each newly introduced instruction.
Since a different set of instructions needs to be applied depending on the
zone transfer use case, it is also important to investigate the overall network
performance for handling different types of zone transfer packets. We now
benchmark the actual network performance for both intra- and inter-domain
zone transfer cases.

Latency Inflation Figure 7.1 illustrates the network benchmark results for
the intra-domain use case. Source and destination zones are located within
the same local network, such that the TP only needs to parse the packets
and perform zone transfer authorization. Since no cryptographic operations
are involved, the additional latency is negligible, as a single legitimate zone
transfer takes ∼ 500 ns. Additionally, the results illustrate that the process-
ing overhead of intra-domain traffic is independent of the packet size, which
is expected since zone transfer authorization operates on the packet header
only.

For inter-domain zone transfer cases, we benchmark the overall network
inflation during TP operations including packet parsing, key derivation, au-
thorization, and authentication. Figure 7.2 and 7.3 depict the processing de-
lay from sender-side TP and receiver-side TP respectively. From the results,
we make the following observations: first, the overall latency inflation that
Mondrian introduces is insignificant (∼ 3µs). Second, Mondrian scales
well with the size of the network, i.e., the number of branches. We do not
see any notable performance degradation (≤ 200 ns) between network sizes.
Third, the size of a packet is the primary factor for the latency increment
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as expected for all data-plane devices. The packet size has a small latency
incremental factor of 1.28 (i.e, 2.5 µs to 3.2 µs). Lastly, we observe no sig-
nificant bias in network performance between sender-side and receiver-side
TPs.

Forwarding Performance We further investigate the actual forwarding per-
formance for various packet sizes (128 B, 256 B, 512 B, 1024 B) including a
representative mixture of Internet traffic (iMIX) [42]; we select the minimum
packet size of 128 bytes instead of 64 bytes which is commonly considered
to be the smallest packet size, because Mondrian’s tunneling requires an
at least 116 bytes long frame, i.e., Outer L3 header (40 bytes), AT header
(36 bytes), and EIP (40 bytes). Figure 7.4 shows the results. The baseline is
the forwarding performance without TP operations. The other bars repre-
sent the forwarding performance for intra-domain zone transfer (with au-
thorization only) and inter-domain zone transfer (with authorization and
authentication) respectively.

For 128-byte packets which demonstrates the highest packet rate, and thus
requiring the most extreme packet processing, the intra-domain zone trans-
fer exhibits a throughput degradation of only 11%. For other packet sizes
we achieve a throughput of 97 ∼ 100%. These results are expected because
TPs only perform zone authorization for intra-domain zone transfer pack-
ets, which increases processing delay by ≤ 500 ns. Considering that a typ-
ical intra-domain packet transmission usually shows a few milliseconds of
latency, the additional delay is negligible.

On the other hand, the inter-domain zone transfer degrades the through-
put by 44% for the smallest packets. Although the degradation diminishes
as the packet size increases, the performance still degrades by 24% for the
iMIX traffic. To investigate the main degradation factor, we compare the
amount of transmitted data (goodput) and the total bits transmitted includ-
ing all the network headers (throughput) as shown in Figure 7.5 and 7.6.
From the comparison, we observe the followings: i) the inter-domain zone
transfer achieves a similar throughput to the baseline if the extra headers are
considered, ii) the performance degradation is caused by not only the addi-
tional processing delay but also transmission delay of the extra headers, and
therefore iii) Mondrian performs similar to today’s tunneling applications
while providing security policy enforcement for network zoning.
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inter-domain zone transfer.
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Figure 7.3: Processing time on TPR
for inter-domain zone transfer.
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Chapter 8

Security Analysis

We analyze the security properties that Mondrian provides, considering
the threat model introduced in §4.3. The attack classes described here are
twofold: i) attacks to infiltrate restricted and highly secure zones without
proper permission, and ii) disruption attacks that prevent availability.

8.1 Infiltration without Permission

One of the main attack objectives is to access valuable information assets
protected by access constraints.

Man-In-The-Middle Attack To become “in the middle”, an attacker could
initiate independent communication channels with two TPs and relay mes-
sages between them. By using the attacker’s public key for the channel
establishments, the attacker is able to generate valid packets that can bypass
the TP’s authentication check.

Mondrian’s PKI design prevents MITM attacks. A MITM attack can suc-
ceed only if the attacker convinces each TP that they are talking to each
other. In the process of secure channel establishment, however, TPs authen-
ticate each other using the certificates issued by the mutually trusted CA
(e.g., enterprise). Since the attacker’s public key cannot be certified by a
valid certificate issued by that CA, a MITM attack will fail.

Packet Replay Attackers can observe valid Mondrian packets and then
reuse them to transmit attack traffic. Nevertheless, the validity of the reused
packet header will be compromised once the payload is changed—recall that
the authentication scope covers the entire packet including AT and EIP as
shown in Figure 6.3—and therefore attackers cannot successfully pass the
authentication check at the recipient TP.
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8. Security Analysis

Brute-force Attack Another approach is to brute-force the key used for
authentication or the MAC. As we are using 128-bit cryptographic keys and
MACs, such attacks are currently infeasible. To achieve resilience to quan-
tum computers, the key size would need to be doubled, however.

8.2 Denial-of-Service Attack

Exhaustion Attack Flooding the TP’s authentication process could be an
effective attack vector. Attackers may attempt to forward a large number of
packets to the target TP in order to exhaust the TP’s resources. Even if the
attack packets contain invalid authentication tokens, the TP still needs to
verify these tokens which wastes resources and prevents legitimate packets
from getting through.

To be resilient to such attacks, we consider operating multiple TPs at the en-
try points of cooperative networks. Multiple TPs enables network operators
to load balance and easily switch over to another TP in case of a link (or a
TP) failure. In fact, many data centers and large enterprise networks already
employ equal-cost multipathing (ECMP) [43, 44] along with multiple gate-
ways and ToRs (Top-of-Rack switches) to provide reliable intra-networking
services. In addition, to mitigate possible DoS attacks from the public Inter-
net, Microsoft implemented a global ECMP infrastructure [45]. Path-aware
networking along with multipath communication also enables active switch-
ing to different entry points, if some fail or are under DDoS attack. [46, 47].
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Chapter 9

Practical Considerations

In this chapter, we discuss some practical considerations including func-
tional and management aspects, along with various deployment scenarios
describing how Mondrian can be realized on today’s enterprise infrastruc-
ture.

9.1 NAT Devices

Multiple hosts connected through a NAT device appear as a single host to
the TP. Internal NAT devices hardly pose a problem since the hosts under
that NAT device are all subject to the same subnet and therefore belong to
a single network zone. Network operators establish a security policy on the
translated IP address, such that TPs are able to authenticate the zone transit
requests from/to a host under the internal NAT device.

However, an external NAT device located in an external network, e.g., carrier
grade NAT, could affect the TP’s secure tunneling ability. The translated
TP’s IP address would cause a MAC verification failure—recall that each
symmetric key binds to the triplet including TPs’ IP addresses as described
in §5.3. This, however, can be addressed by enforcing TPs to use their public
IP addresses to derive the symmetric keys. The keys are still secure since the
first-level key from which the pairwise keys are derived is exchanged with
the CA-certified public keys. Discovering the translated TP address is also
not a problem thanks to the controller informing senders about the recipient
TP’s address (see Protocol 3 in Figure 5.1).

A potential operational failure occurs where multiple TPs reside behind the
same NAT device. This would lead to remote TPs deriving identical keys for
all the TPs behind the NAT. One possible solution would be to use a unique
TP identifier instead. Since all such TPs would be under one administra-
tion domain, assigning unique TP identifiers upon bootstrapping is feasible.
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Then, the TPs convey their identifiers in the AT header field alongside the
destination zone ID. This might slightly increase the size of the header, but
does not degrade the security of the underlying authentication.

9.2 Tunneling Granularity

Secure tunneling can be realized in different granularities: i) site-to-site tun-
neling, ii) zone-to-zone tunneling, and iii) site-to-zone tunneling (the one
used by Mondrian).

Similar to IPSec VPN, site-to-site tunneling provides strong guarantees about
communication security and privacy for two tunnel endpoints. However,
from a flexibility and manageability standpoint, having a site-to-site tunnel-
ing architecture is not ideal. Every tunnel endpoint needs to share a key
with every other endpoint with which it wishes to exchange data. This adds
state to the endpoints that needs to be kept in sync. Adding a new site re-
quires an update on all the other sites that wish to communicate with the
new site. Then, yet another layer of security middleboxes (e.g., firewalls) are
required to perform zone transfer authentication since keys do not designate
a specific zone.

An alternative way of providing authentication is to use one key per zone
pair. In this model, when a zone transfer is required, a TP would sign
the data on behalf of the zones with the corresponding source/destination
zone key pair. This approach has the benefit that sender and receiver get
decoupled as in principle any site that possesses the right keys can perform
that zone transfer. Adding a new site would be as easy as fetching the right
keys for the desired zone combinations. This process is independent of all
the other sites. However, a receiver TP needs to be able to fetch the right
keys from the cache, in order to derive second-level keys, which means that
the zone transfer information must be visible in plain text. Thus, an attacker
could potentially learn the zone structure of the observed network. Also,
having a separate key per zone pair does not scale since the number of
zones gets big very quickly for large networks.

Driven by these considerations, we designed the new concept of site-to-zone
tunneling, which represents a middle ground combining the advantages
of the two approaches, the notion of secure tunneling and zone transfer
authentication. The symmetric keys are distinguishable depending on the
destination zone, while at the same time the zone-to-zone security policies
are not being exposed. Thanks to the flexible and scalable key derivation
scheme introduced in [36], the key establishment does not expand state,
while still providing unique symmetric keys per zone. Furthermore, this
scheme scales linearly with the number of sites, not the number of zones,
which ensures scalability.
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9.3. Distributed Controllers

9.3 Distributed Controllers

Driven by the scalability and reliability issues inherent to a single physical
controller, namely single-point-of-failure, logically centralized control-planes
built on physically distributed instances find wide acceptance in the current
practice. The most common approaches realizing distributed controllers can
be broadly categorized into horizontal distribution [48, 49] and hierarchical
distribution [50, 51]. Independent of which distribution architecture is used,
we discuss location, coordination, and migration aspects of distributed con-
trollers.

Location The notion of a logically centralized control-plane offers flexibil-
ity in network design and management. A key design choice is placement
of the (distributed) controllers, which could impact to performance, reliabil-
ity, and management scalability of a given network. There is comprehensive
research on the controller placement problem considering practical issues
from control latency to reliability, from cost-optimization to load balancing,
and so on [52–54]. Among those, we are mainly interested in the latency
performance indicator; that is the latency between a controller and regional
forwarding devices.

The best latency is achieved when each branch site has its own controller.
By a placement near local TPs, the controller minimizes the TP-controller
latency for the zone transfer authorization protocol, allowing instant feed-
back for packet forwarding—we note that inter-controller communication
for global coordination is commonly not latency sensitive. For the sake of
control-plane security, the controller resides in a highly restricted zone to
which only the local TPs and remote controllers have access. Although the
per-site controller offers the best performance regarding policy enforcement
for the data-plane, there might be a cost-efficiency problem for a large-scale
network with thousands of branches.

Alternatively, we consider a sparse distribution model, e.g., on edge-cloud
systems. Similar to today’s cloud services, network operators running ge-
ographically distributed data centers can instantiate multiple controllers at
the central point of regional branches. The control-plane latency overhead
would be higher compared to the dense deployment model—if the data cen-
ter edges are geographically diverse, the overhead could be minimized—but,
in terms of cost-optimization and management scalability, it could be a more
viable approach.

Coordination It is important to keep consistency in global coordination
across the distributed controllers. Indeed, inconsistency in security pol-
icy might grant hosts with a low security clearance unauthorized access
to highly restricted zones, resulting in unexpected information leakage and
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eventually administration failure. With this in mind, we consider a consen-
sus algorithm with strong consistency guarantees [55–57], where the secu-
rity policy is dynamically shared/replicated across the distributed controller
instances, ensuring concurrent policy enforcement towards the data-plane
devices. There are numerous open-source projects, such as Consul1, Apache
ZooKeeper2, and ETCD3 available.

TP Migration To benefit from the distributed controller environment, a
dynamic controller discovery process also becomes important. That is, TPs
should be able to search a cluster of best candidates, diagnose the perfor-
mances of control latency, and seamlessly migrate to the best controller. To
this end, we consider a two-step migration process: i) TP-driven control
channel initialization and ii) controller-driven TP migration.

TPs are responsible for establishing the first control plane channel with a
controller. For example, a new TP (TPnew) has been configured to contact an
initial controller acting as a first rendezvous point. The initial information
contains the controller’s IP address (C), the corresponding zone ID (ZC), and
the TP’s IP address behind which the controller resides (TPC). If the con-
troller is located in a remote site (i.e., TPnew 6= TPC), TPnew should connect
with C through TPC. Otherwise, e.g., C is within the same LAN or in pub-
lic network, TPnew can directly send C a request for control-plane channel
establishment.

Once the TP joined the network, the controller then initiates a migration pro-
cess to find the best controller (Cbest) for TPnew. Upon a migration request
broadcasted by C, other controllers measure the possible latency to TPnew
and reply back the results. Then, C elects Cbest considering the latency mea-
surements and the current load balance, and sends TPnew a RoleChange()

request containing Cbest, ZCbest , and TPCbest . Finally, TPnew swaps the best
controller by establishing a new channel with Cbest. The migration process
is also applied when changes in the network are detected.

9.4 Nonce Reset

The same nonce must never be used twice with the same key, otherwise the
security of the cipher significantly decreases. In theory it is easy to create
nonces that fulfill this requirement. One can simply use a counter which
is increased for every invocation of the AEAD algorithm. In real systems
this is not so easy to achieve since machines can crash and lose their state,

1https://github.com/hashicorp/consul
2https://zookeeper.apache.org/
3https://github.com/etcd-io/etcd
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9.5. Fast Failover

Table 9.1: Comparsion of different nonce creation strategies. l is the length of the
nonce, s ≤ l is the subset of bits reserved for the random part of the nonce, p is the
number of nonces generated and r is the number of unplanned nonce resets.

requires ran-
domness

requires
non-volatile
memory

overlap
probability
w/o resets

overlap prob-
ability for r

resets

overlap

counter only no no 0 1 full

randomness
only

yes no 1− (2l)!
2l∗p(2l−p)! 1− (2l)!

2l∗p(2l−p)! partial

counter
paired with
randomness

yes no 0 1− (2s)!
2s∗r(2s−r)! full

reset points no yes 0 0 -

specifically their nonce counter. Outlined below are some techniques to
approach this problem.

• Purely random nonce: uses all bits of the nonce for randomness. Low
probability for overlap but no guarantee even when no resets.

• Counter paired with random sequence: divides the nonce into a counter
and a randomized part. Initialize the random part after every restart
and increase the counter part for every packet. On reset start counter
from zero with a fresh randomized part. In case of overlap all packets
do overlap.

• Reset points: defines specific resets points for the counter which are
stored on non-volatile memory (NV-memory). Increment counter in
memory and write the next reset point to NV-memory when threshold
is crossed. On crash restart counter from reset point on NV-memory.

Table 9.1 shows a comparison of the mentioned approaches. For this work,
we chose the approach of pairing an 8 byte counter with 4 bytes of random-
ness (s = 32) to obtain a 12 byte nonce. An example calculation shows that
for r = 10′000 resets, the probability of a nonce clash is still only ∼1.16%.

9.5 Fast Failover

Operating multiple TPs with advanced ECMP-enabled layer 2 protocols
(e.g., SPB and TRILL) is a viable network design that provides load bal-
ancing and enhanced resiliency against a TP or link failure, as we discussed
in §8.2. If a TP is unable to continue data transmission, ECMP engages. It
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searches an alternative forwarding path considering cost equality and redi-
rects flows through the new path, assuring continuous communication for
end hosts [58]. This elastic migration during a transient network outage,
however, does not replicate the forwarding state of each flow, and thus might
require another step of repopulating forwarding state. Upon packet arrival,
the new TP fetches the zone transfer policy and caches it in the forwarding
table. Note that for established connections this might cause unexpected
packet drops if the first packet is a response. Nevertheless, the communica-
tion would continue as soon as the original sender notices the packet drop
and requests a retransmission.

9.6 Incremental Deployability

To be incrementally deployable, Mondrian does not require changes from
end hosts nor the local network infrastructure. Mondrian can take a sup-
portive role by complementing already installed lines of defense such as
firewalls, IPS, and IDS. For instance, traffic can be pre-filtered by TPs before
it reaches firewalls located deeper inside the network. This approach favors
an incremental deployment strategy. On the other hand, Mondrian can also
be used as a single, all-in-one solution providing packet filtering, tunneling,
and routing within one device. Such a deployment is especially interesting
for small branch sites with much simpler network layouts. Here, Mondrian

can drastically reduce the number of devices that need to be maintained.
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Chapter 10

Conclusion

10.1 Summary

Network zoning has long been recognized as the cornerstone of secure net-
work operation and management. In the current practice, operators realize
network zones with network segmentation technologies and security mid-
dleboxes. As information systems become more dynamic from a topological,
operational, and functional perspective, however, the conventional network-
zoning architectures face new challenges in terms of scalability and flexibil-
ity. In this thesis, we have shown that lightweight policy enforcement for
inter-zone communication is achievable. Following a constructive approach
with a cryptographic foundation, it is possible to create a proactive alter-
native to the mostly reactive systems presently used in network zoning. In
conjunction with Mondrian, verification based on firewalls becomes sim-
pler because firewalls would only process a limited amount of (filtered) traf-
fic. Mondrian consequently reduces the number of management points of
distributed networks while retaining a high degree of security.

10.2 Future Work

The work presented in this thesis can be extended along different axes. For
one, it would be interesting to explore how an architecture like Mondrian

can be used to provide privacy for inter-domain data transmissions. Mon-
drian provides confidentiality and integrity on the data in transit. However,
certain traffic patterns and packet sizes could still allow an attacker to draw
conclusions about what sort of traffic is being sent (e.g., sensor data, con-
trol messages, file transmissions) and which security zones are located at a
given site. If privacy is a concern, a first step could be to extend TPs with
new modules that pad all packets to the full MTU length and insert mock
traffic, such that traffic patterns are hidden.
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Another direction in which this work could be extended is the implementa-
tion of the TP gateway in a high-performance language. Various operations—
in particular cryptographic ones—would benefit from an optimized imple-
mentation on dedicated network hardware.

Lastly, it would be interesting to explore how certain properties of local
networks can be conveyed across the WAN to a remote network. For ex-
ample, technologies such as SPB and TRILL have support for layer 2 multi-
pathing, the corresponding control messages are, however, not transmitted
by Mondrian. A deeper interoperability of different protocols across net-
work boundaries would certainly be a desirable property.
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Appendix A

Controller Database

1 CREATE TABLE Zones (
2 id INTEGER NOT NULL,
3 name TEXT ,
4 PRIMARY KEY( id )
5 ) ;
6
7 CREATE TABLE S i t e s (
8 tp address TEXT NOT NULL,
9 name TEXT ,

10 PRIMARY KEY( tp address )
11 ) ;
12
13 CREATE TABLE Subnets (
14 n e t i p BLOB NOT NULL,
15 net mask BLOB NOT NULL,
16 zone id INTEGER NOT NULL,
17 tp address TEXT NOT NULL,
18 PRIMARY KEY ( net ip , net mask ) ,
19 FOREIGN KEY ( zone id ) REFERENCES Zones ( id ) ON DELETE CASCADE,
20 FOREIGN KEY ( tp address ) REFERENCES S i t e s ( tp address )
21 ON DELETE CASCADE
22 ) ;
23
24 CREATE TABLE T ra ns fe rs (
25 s r c INTEGER NOT NULL,
26 dest INTEGER NOT NULL,
27 PRIMARY KEY ( src , dest ) ON CONFLICT REPLACE,
28 FOREIGN KEY ( s r c ) REFERENCES Zones ( id ) ON DELETE CASCADE,
29 FOREIGN KEY ( dest ) REFERENCES Zones ( id ) ON DELETE CASCADE
30 )

The controller database consists of 4 tables: Zones, Sites, Subnets, and
Transfers. The Zones table contains all network zones known to the con-
troller, identified by zone IDs. Additionally, a human-readable description
is attached. The Sites table holds all known branch sites with the addresses
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of the corresponding TPs and a textual description. The Subnets table de-
scribes the configured IP subnets together with their zone membership and
the TP behind which they are located. Finally, the Transfers table reflects
the zone transfer matrix of allowed zone transfers.
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